
Compression and Approximate
Matching

L. ALLISON, D. POWELL AND T. I. DIX

School of Computer Science and Software Engineering, Monash University, Australia 3168
http://www.cs.monash.edu.au/∼lloyd/tildeStrings

A population of sequences is called non-random if there is a statistical model and an associated
compression algorithm that allows members of the population to be compressed, on average. Any
available statistical model of a population should be incorporated into algorithms for alignment
of the sequences and doing so changes the rank order of possible alignments in general. The
model should also be used in deciding if a resulting approximate match between two sequences
is significant or not. It is shown how to do this for two plausible interpretations involving pairs of
sequences that might or might not be related. Efficient alignment algorithms are described for quite
general statistical models of sequences. The new alignment algorithms are more sensitive to what
might be termed ‘features’ of the sequences. A natural significance test is shown to be rarely fooled
by apparent similarities between two sequences that are merely typical of all or most members of

the population, even unrelated members.

Received April 4, 1998; revised January 28, 1999

1. INTRODUCTION

An alignment of two sequences shows how they could
be related, i.e. how they can be matched, approximately.
A particular model for relating sequences defines a cost
or alternatively a score, to be optimized when finding an
optimal alignment. Typical models focus on the similarities
and differences between the sequences, trying to maximize
the number of matches between characters, for example the
longest common subsequence (LCS) [1], or to minimize the
number of differences, for example edit distance [2, 3], or to
do both in some combination [4]. There is generally a tacit
assumption that the sequences themselves are random, in the
sense of being incompressible, or that any non-randomness
is limited to a simple skew in the frequency of use of
individual characters; it is the aim of this paper to remove
this assumption.

Figure 1 shows an example alignment of the sequences
‘compression and approximate matching’ and ‘comprehen-
sion of appropriate meaning’. Spaces have been replaced by
‘/’ to make them visible. The sequences have been padded
out with a special null pseudo-character, denoted by ‘–’, so
that they have the same length. Matches are emphasized by
a vertical bar, ‘|’, between the matched characters. If the
first sequence is considered to be the parent, although this
is an arbitrary choice, then a column with a ‘–’ in the top
row represents an insertion and a column with a ‘–’ in the
bottom row represents a deletion. No column may contain
two ‘–’s. A column with different (real) characters in the
top and bottom rows represents a change, also known as a
mismatch. A match is sometimes called a copy.

An alignment shows one way of editing one sequence
into another using point, that is character, mutations. Each

compre--ssion/and/approximate/matching
|||||| ||||| |||||| ||||| |||
comprehension/of-/appropriate/m-eaning

FIGURE 1. Example alignment.

operation can be given a cost or a score, and one can then
search for an optimal alignment. Matches are good and are
given low costs or high scores. Mutations are bad and are
given high costs or low scores.

The costs (or scores) used in alignments can be viewed
from an information theory point of view. There are two
parts to such costs—those associated with the alignment
itself [5] and those associated with the characters of the
sequences. The two parts are often bundled together
and not considered separately. Separating them allows
one to consider and to model the process by which two
sequences differ and also to consider and to model the
population of sequences. This leads to more accurate models
for approximate matching of sequences and to computer
programs that give better results than otherwise.

Failing to correctly model the population of sequences
can, for example, lead to a large number of false-positive
close matches when comparing a new sequence against a
collection. This has long been recognized as a problem
in genetic databases, for example Fitch [6] discusses a
correction based on randomizing sequences and retesting.
Wootton [7] describes another method of masking-out
regions of low ‘compositional complexity’ before looking
for matches so as to reduce false positives. (Compositional
complexity is there defined as the entropy of the multi-state
distribution [8, 9] in sliding windows of some fixed length.)

THE COMPUTER JOURNAL, Vol. 42, No. 1, 1999

2 L. ALLISON, D. POWELL AND T. I. DIX

...AAAAA... ...ABCDE...
||||| |||||

...AAAAA... ...ABCDE...

(i) (ii)

FIGURE 2. Low and high information content matches.

The ‘xnu’ program (Claverie and States [10]) also performs
masking out. It can be used to preprocess protein search
strings and masks out any tandem repeats with a period
of four or less that have a specified degree of similarity.
Masking-out is drastic because low complexity regions
contain some, not zero, information and may themselves be
of interest. The methods described here show how to attach
the appropriate weight to low and high information sections
of sequences for quite general notions of complexity. We
also show that false-negatives are possible if the population
of sequences is not correctly modelled.

We consider two general classes of model for matching
pairs of sequences. In the first class, it is assumed that each
sequence is a noisy observation of one hypothetical, real
sequence. This corresponds to some laboratory situations,
for example to the sequence assembly problem [11]. In
the second class of model, there is no hypothetical real
sequence; the objective is to align two sequences that
are of equal standing. In both model classes, sequences
are assumed to be non-random in the sense of being
compressible; this is discussed further in the next section.

The non-randomness of sequences should be taken into
account in their alignment. For example, assuming that runs
of repeated characters are common, Figure 2 shows matches
on low information content, i.e. compressible, subsequences
‘AAAAA’ and high information content, i.e. incompressible,
subsequences ‘ABCDE’ that might occur in alignments.

It is intuitively obvious that partial match Figure 2i
is good but that Figure 2ii is more significant. The
subsequence ‘ABCDE’ is more surprising than ‘AAAAA’,
for the assumed model, and the fact that it occurs in both
sequences is strong evidence for those sections being related
whereas ‘AAAAA’ is more likely to have occurred twice
merely by chance. Consequently partial match Figure 2ii
should give a greater benefit to an alignment than Figure 2i.
If an alignment could only contain match Figure 2i or
2ii but not both, then it would be better for it to contain
Figure 2ii. However, if runs of repeated characters were
rare and alphabetically ordered runs were common, the roles
would be reversed!

In the following, it is shown how to make precise the
intuition from the above example. Sequence alignment
algorithms that generalize common alignment algorithms
by incorporating various models of sequence compression
are described. The examples given use the DNA alphabet
{ACGT}, but the methods are applicable to sequences over
other alphabets.

2. COMPRESSION AND NON-RANDOMNESS

A population of sequences,F , is said to be ‘non-random’ if
there is a statistical modelM and an associated compression
algorithm m(), such that (i) m−1(m(S)) = S and
(ii) |m(S)| < |S| on average, for sequencesS chosen
from F . |x | denotes the length of a sequencex measured
in bits. The definition of non-random may seem strange
to some. On the one hand, the existence of such an
m() obviously shows the population to be non-random.
Conversely, a population being non-random must mean that
there is some systematic bias in its composition although this
might be subtle. Any such bias will allow an algorithm to
make better than chance predictions of the sequences and
lead to a compression algorithm. We shall sometimes abuse
notation and write aboutm() as if it were the model.

The ability to compress sequences comes from repetition,
pattern and structure within them. As a familiar example,
‘u’ almost invariably follows ‘q’ in English text (‘Qantas’
being an exception) which allows the u to be encoded at
very little cost. It is now realized that data compression
essentially consists of two parts—prediction and encoding.
Shannon’s theory of communication [12] shows that an
item I of probability P(I) is given a code word of length
−log2(P(I)) bits in an optimal code. A predictor makes
predictions about the next item and an encoder allocates
code words on that basis. The decoder uses an identical
predictor. Predictors are based on statistical models of
the data and modelling is now seen to be the hardest part
of data compression: the best model leads to the greatest
compression. An arithmetic encoder [13] is capable of
approaching the theoretical limits of encoding arbitrarily
closely, even down to fractions of a bit. In this work we
use predictors which yield probabilities of characters given
the preceding context, i.e.P(S[i] = x |S[1..i − 1]) wherex
ranges over the alphabet.

There is often prior knowledge about a population of
sequences. For example, if DNA sequences were random,
that is if each character (each base{ACGT}) was equally
likely to occur in a position and if each position’s value
was independent of its neighbours’ values, it would be
impossible to do better than to allocate each character a
two-bit code. However, low-order Markov models compress
DNA to about 1.9 bits per character and more sophisticated
models do rather better [14, 15, 16, 17]. Some sections of
DNA are highly compressible. Many short sequences, such
as TATA boxes, are known to occur in DNA. Runs of ‘A’s
known as poly-A, (AT)+ and (CG)+ sequences also occur
more often and at greater length than ‘by chance’. As
another example, the Alu’s [18] are a family of sequences,
each about 300 characters long, which occur hundreds of
thousands of times in human DNA. A typical Alu sequence
is about 87% similar to the consensus sequence.

If some pattern or structure amongst a population of
sequences is known and if it is statistically significant then
it can be used to compress the sequences. For example, if
trying to compress DNA, one could have a special codeword
to indicate the presence of an Alu sequence, which would

THE COMPUTER JOURNAL, Vol. 42, No. 1, 1999

COMPRESSION ANDAPPROXIMATE MATCHING 3

be followed by an encoding of the differences from the
consensus Alu. The allocation of such an Alu code word
would add very slightly to the coding of non-Alu stretches
of DNA, so that one would lose out overall if Alu’s did not
occur sufficiently often and with sufficient fidelity to justify
this action. In this way compression gives a significance test
on any hypothetical pattern or structure that is claimed.

A model for a population of sequences might be based on
prior knowledge or, failing that, one might choose a general,
parameterized model and fit it to a particular data set. For
example, one might assume a Markov model of some orderk
and estimate its parameters from the data.

3. ALIGNMENTS OF RANDOM SEQUENCES

Point-mutation models are commonly used to describe the
mutation of sequences and the relationship of one sequence
to another. The basic operations are to copy (alias match),
change (alias mismatch), insert or delete a character. The
generic dynamic programming algorithm (DPA) of Figure 3
can be used with a variety of point-mutation models and
costs to find an optimal alignment of two sequences, S1 and
S2, of lengths∼ n, in O(n2) time.

The DPA can be made to calculate the longest common
subsequence (LCS), the edit distance and other functions of
two sequences by making suitable choices forz, c(), f () and
g(). The popular linear and piecewise linear gap-costs [19]
can also be included by storing extra state information in
each entry,M[i, j], and by making suitable choices ofc(),
f () andg().

For given probabilities, P(match), P(mismatch),
P(insert) and P(delete), which must sum to 1.0, the
following instantiation of the dynamic programming
algorithm finds a most probable alignment of two given
sequences:

z = 1 -- NB
g() = max()
f() = *
c(x,x) = P(match) * P(x)
c(x,y) = P(mismatch) * P(x,y | x!=y)
c(x,"_") = P(delete) * P(x)
c("_",x) = P(insert) * P(x)

The actual alignment can be found by a trace-back of the
choices made byg(). If P(match) etc. are not known
in advance, an iterative expectation maximization (EM)
approach [20, 21] can be used to estimate them.

Note that two different alignments are two different or
exclusive hypotheses of how the two sequences are related,
so the alignments’ probabilities may legitimately be added.
Furthermore, if the sequences are related under the point-
mutation model then it must be by some alignment. So,
summing all alignment probabilities gives the probability
that the two sequences arose in some related but unspecified
way; a specific alignment is a nuisance parameter if one just
wants to know if the sequences are related, but not how [22].
The resulting DPA still runs in O(n2) time:
g() = + -- z, f() & c() otherwise as above
P(S1 & S2 | related) = SUM[all alignments L] P(S1 & S2 & L)

The probabilities computed in variants of the DPA are
very small for sequences of realistic lengths and would cause
arithmetic underflow, so it is better to compute with their
negative logs:

z = 0
either

g() = min() -- find an optimal alignment
or

g() = logplus() -- sum probability of all alignments
where logplus(-log 2 (P1),-log 2 (P2)) = -log 2 (P1+P2)

f() = +
c(x,x) = -log 2 (P(match) * P(x))
c(x,y) = -log 2 (P(mismatch) * P(x,y | x!=y))
c(x,"-") = -log 2 (P(delete) * P(x))
c("-",x) = -log 2 (P(insert) * P(x))

This also corresponds to a coding or information theory
interpretation and it is natural to imagine transmitting the
sequences to a receiver and to speak of the ‘message length’
(after Shannon’s communication theory) of an alignment
[22], say. Note that all logs are taken to base two, giving
‘bits’ as the unit of measurement, in what follows.

The converse of the hypothesis that the two sequences are
related forms a natural null-hypothesis that the sequences
arose quite independently and its information content is
simply

|S1| + |S2|

provided thatS1 and S2 are random. On the other hand,
if S1 and S2 are compressible by algorithmm(), the true
information content ofS1 andS2 under the null-hypothesis
is

|m(S1)|+|m(s2)|

No hypothesis with a message length greater than that of the
null-hypothesis is ‘acceptable’.

4. GIVING A COST TO ALIGNMENTS OF
COMPRESSIBLE SEQUENCES

Next consider the problem of calculating a natural cost for a
given alignment of two sequences drawn from a population
of non-random sequences. This allows two alignments to
be compared so that we can say which one is better. The
search problem, i.e. finding an optimal alignment, is also
considered. It will be seen that almost any model of non-
random sequences can be incorporated into assigning costs
to alignments although not all models lead to efficient search
algorithms.

Recall that a population of sequences,F , is non-random
(or compressible or of low information content) if there is
some modelM with a compression algorithmm() such that
|m(S)| < |S| on average for sequences drawn fromF .
We should usem() in costing alignments for two reasons.
Firstly,m() is rightly used in the null-hypothesis to compress
the individual sequences and will give it an unfair advantage
over alignments unless they usem() as well. Secondly,m()

should influence which alignments are more or less optimal
as suggested in the introduction. There seem to be two
starting points for trying to incorporatem() into alignments,
each of which leads to a class of models. The first class

THE COMPUTER JOURNAL, Vol. 42, No. 1, 1999

4 L. ALLISON, D. POWELL AND T. I. DIX

M[0, 0] = z

for each i in 1 .. S1.length
M[i,0] = f(M[i-1, 0], c(S1[i], "_")) -- Boundary

for each j in 1 .. S2.length
M[0,j] = f(M[0, j-1], c("_", S2[j])) -- conditions

for each i in 1 .. S1.length and j in 1 .. S2.length
M[i,j] = g(f(M[i-1, j-1], c(S1[i], S2[j])), -- (mis)match

f(M[i-1, j], c(S1[i], "_")), -- delete S1[i]
f(M[i, j-1], c("_", S2[j]))) -- insert S2[j]

FIGURE 3. Generic DPAM[i, j] = cost or score ofS1[1..i]& S2[1.. j].

has been introduced elsewhere by Powellet al. [23] and is
sketched here for completeness; it also inspired the second
class which is more general and new.

4.1. Model class 1: two observations of one real
sequence

In this situation it is supposed that there is one real but
unknown sequence,R, and that two observations of it,S1
and S2, are made by experiment. The experiments are not
perfect and introduce experimental error so that the observed
sequences are not identical to each other. One problem
is to infer the real sequence, another is to find an optimal
alignment of S1 and S2, and a third is to estimate the
probability thatS1 and S2 are in fact related in this way.
Something close to this situation occurs within the sequence
assembly problem [11].

Each of the given sequences (observations) may be the
result of experimental error on an unknown real sequence.
Being a real sequence, the latter would be compressible
by m(). The observed sequences would be compressible
under a related model although perhaps not to the same
extent asR. However, if R were known,S1 andS2 could
be encoded as a list of differences fromR, for a given model
of experimental errors. The information inS1 andS2 for a
hypotheticalR is

|m(R)| - log 2(P(S1|R)) - log 2(P(S2|R))

R is dealt with by the model for sequences,M, with its
compression algorithm,m(), and S1 andS2 by the model
of experimental error for which one of the variations on the
edit distance serves well.

For a given model of sequences, a model of experimental
error and an alignment also specifyingR, the information
content of this complete hypothesis can be readily
calculated. Note that if only an alignment is required,
R becomes a nuisance parameter and it is necessary to
sum over all possibleR’s to avoid bias. It is possible to
achieve this in O(n) time, given an alignment, for finite-
state models of sequences with one small approximation:
if we limit R to having at most one character per column
of the alignment, it is possible to sum the probabilities

of S1 and S2 for all such R. The omission is that
there could be an arbitrary number of characters inR that
were missed in both observationsS1 and S2—such an
occurrence will have a very low probability, but a non-zero
one. The converse, that bothS1 andS2 contain erroneous
observations of non-existent characters, is easily allowed.
With the above reservation, a scan along the alignment
can calculateP(columns[1..i]|R[i] = ch) conditional upon
each possible character ‘ch’. In model class 2, see later,
sequenceR is done away with altogether.

The search problems are (i) to find an optimal alignment
together with R and (ii) to find an optimal alignment
summing over all possibleR’s consistent with it. The
solution is to treatR as a hidden variable by adding extra
states to the entries of the DPA matrixM[i, j] which
represent costs conditional on a particular character value
for the current position inR.

4.1.1. Implementation and tests
The DPA is modified for this first model class [23] by
including extra state information in each entryM[i, j].
R-state, I1-state and I2-state refer to ‘use the real
sequenceR’, ‘insert in S1’ and ‘insert inS2’ respectively;
see Figure 4. A transition to theR-state indicates that a
character fromR has been used; it may have been copied,
changed or deleted inS1 and similarly inS2. A transition
to I1 indicates that a character has been inserted intoS1
relative to R, and similarly for I2. An insertion into
sequenceS1 does not affect sequencesR or S2. To avoid
any double-counting, we insist that any insertions intoS1
occur before any adjacent insertions intoS2, i.e. there is no
direct transition from stateI2 to I1.

The arcs represent possible transitions to the states of cell
M[i, j] from its north, west and north-west neighbours. If
an optimal real sequence,R, is sought then the algorithm is
made to choose the most probable incoming arc to each state.
The probability ofS1 and S2, given that they are related
in this way through anyR, can be found by summing the
probabilities of paths into each state. An optimal alignment,
over all R, can be found by a trace-back which chooses the
maximum cell-to-cell probability ‘flow’.

For the case of first-order Markov models of real

THE COMPUTER JOURNAL, Vol. 42, No. 1, 1999

COMPRESSION ANDAPPROXIMATE MATCHING 5

FIGURE 4. DPA for model class 1; arrivals inM[i, j]. Key: R,
char fromR; I1, ins′ char inS1; I2: ins′ char inS2.

sequences, theR-state contains information conditional
upon each possible character value for the corresponding
position of theR sequence, for example{ACGT} for DNA.
Thus all character-to-character transitions in sequenceR
can be given their appropriate code-lengths. TheI1- and
I2-states do not involve a character fromR. They carry
forward information conditional on the last character of the
R sequence for the resumption ofR-state transitions. In
practice the state information inM[i, j] can be combined
and reduced somewhat [23].

Tests were done using artificial sequences generated from
a first-order Markov model,MMg. This choice was made
purely on the basis of simplicity and we do not argue
that MMg is a true model of any real population. 100
pairs of sequences of length 100 were generated from
MMg. The sequences in a pair are completely unrelated
except in coming fromMMg. Of course they do share
something, perhaps a kind of convergent evolution, but they
are unrelated in the sense that they are not siblings and one
was not derived from the other. Each pair of sequences
was aligned using the algorithm described above under two
methods: (i) using a uniform model forR, (ii) usingMMg as
the model forR. For each method, the difference in message
lengths of the null-hypothesis and an optimal alignment,
i.e. their−log odds-ratio, was calculated and the mean and
the standard deviation of this quantity over 100 trials were
recorded. A positive (versus negative) mean implies that
the elements of the pairs are inferred to be related (versus
unrelated) on average, under the method. The number of
positive and negative inferences were also recorded. For
each method, the null-hypothesis and the alignment used the
same population model. Table 1 summarizes the results. We
see that use of the incorrect, uniform model leads to a great

TABLE 1. Unrelated sequences, alignment with two models forR.

MMg, generating model:

A C G T odds for S[i+1]|S[i]
+-------

A |1 1 1 9
C |9 1 1 9 i.e. sequences are

S[i] G |9 1 1 9 AT-rich
T |9 1 1 1

Analysis:
-log odds

method null:alignment inference
(i) uniform 13 +/- 13, 11-, 89+

(ii) MMg -25 +/- 8, 100-, 0+

many false positives, but method (ii) correctly infers that the
pairs are not related.

It is possible in principle to use other models for
the R sequence, provided that they have finite memory, by
appropriate elaboration of the state information inM[i, j]
while the algorithm’s complexity remains O(n2) but with a
worse constant. Second-order models are probably the upper
limit in practice. Model class 2, below, is much more flexible
in this regard. Linear gap-costs etc. for indels [5, 19] could
also be included in model class 1 by elaboration of theI1-
andI2-states.

4.2. Model class 2: averaging two sequences

In this situation there are two real sequences,S1 and S2,
and we wish to know if and how they are directly related.
They may have a common ancestor but this cannot be used
in the way thatR was used in model class 1 because it
would merely give us three real sequences to compare and
not simplify the problem.

The probability of two related sequences can be expressed
in various ways:

P(S1&S2 | related) = P(S1) . P(S2 | S1, related)
= P(S2) . P(S1 | S2, related)
= SUM[all alignments L] P(S1 & S2 & L)

If the sequences are compressible,S1 by modelM1 and
algorithmm1(), S2 by modelM2 and algorithmm2(), then
|m1(S1)| = −log2(P(S1)) and|m2(S2)| = −log2(P(S2)),
assuming thatm1() and m2() give optimal compression
under M1 and M2, respectively. Note that ifS1 and
S2 really are related then good choices forM1 and M2
cannot be very different but they might be instances of
a parameterized model with slightly different parameter
values for example. In order to codeS1 andS2 one might
code S1, compressing it withm1(), and then codeS2 as
the differences fromS1, but this does not take advantage
of M2. Alternatively one might codeS2, compressing
it with m2(), and then codeS1, but now failing to take
advantage ofM1. These two schemes could even give

THE COMPUTER JOURNAL, Vol. 42, No. 1, 1999

6 L. ALLISON, D. POWELL AND T. I. DIX

different message lengths which is unsatisfactory because
we want an encoding in−log2(P(S1&S2|related)) bits. We
really want to blendS1 andS2 in some way. There is good
reason to prefer a symmetric method which was realized for
random sequences by coding them through their alignment.
We may nevertheless sometimes write as thoughS1 is the
‘parent’ andS2 the ‘child’, although this is quite arbitrary
and the roles can be reversed.

Informally, an alignment can be thought of as representing
a fuzzy sequence. For example, the alignment of ‘com-
pression and approximate matching’ with ‘comprehension
of appropriate meaning’ in Figure 1 can be taken to represent
the set of possible sequences beginning{compression. . . ,
comprension. . . , comprehssion. . . , etc.} These alternatives
could be taken as possible values forR in model class 1
but removing any such explicitR leads to a more flexible
method. The alternatives will be compressible to varying
degrees. We try for a way of using their compressibility,
without committing to any particular one, to transmit an
alignment ofS1 andS2. Also remember that if an O(n2)

optimal-alignment algorithm is to be realized, it is desirable
that the amount of work done for each character pair,
(S1[i], S2[j]), be bounded by a constant and that there be
no backtracking to revise the work at a later stage.

The following examples illustrate the various cases that
the DPA examines in its central step:

i i i i
S1:ACGACGACGAC-

||* ||* ||* ||*
S2:ACGACTAC-ACT

j j j j

match mismatch delete insert

Omitting the characters of the two sequences, an alignment
can be coded as a sequence over{match, mismatch, insert,
delete}. These give the structure of the alignment while
ignoring the sequences’ character values. To encodeS1
and S2 the characters must also be included. The case
of insertions gives us a clue of how to do this. If the
characters ofS2 were independently generated then we
could do no better than give a fixed code word (cost) to each
character value regardless of the context inS2. However,
it is assumed here thatS2 is compressible and that the
probability distribution forS2[j] depends onS2[1.. j − 1]
so the probability ofS2[j] in an insertion can be estimated
as

P(S2[j]|S2[1..j-1])

Deletions are similar to insertions and the probability of
S1[i] in a deletion can be estimated as

P(S1[i]|S1[1..i-1])

i.e. the probability and hence the code word length or cost
for the character inserted inS2 (respectively deleted from
S1) comes from the modelM2 for S2 (M1 for S1). Note that
these values depend only onS1[1..i − 1] andS2[1.. j − 1].

In the case of a match, the character valuex = S1[i] =
S2[j] need only be transmitted once; this is where the

savings in good alignments come from, in transmitting
both S1[i] and S2[j] for little more than the cost of one
character. Now there are two sources of information about
the character value:M1 and M2. A prediction of the
valuex can come fromM1 or M2 or some combination of
them. The following average is the simplest estimate of the
character’s probability that uses both sequence models in a
sensible and symmetric way:

(P(x|S1[1..i-1])+P(x|S2[1..j-1]))/2

A mismatch also involvesS1[i] and S2[j] but now they
are known to differ. The characters’ joint probability can
be estimated by multiplyingP(S1[i]|S1[1..i − 1]) and
P(S2[j]|S2[1.. j − 1]) after renormalizing the latter to
account forS2[j] differing from S1[i]. A different estimate
comes from a mirror calculation, that interchanges the roles
of S1 andS2. The average of these two alternatives is the
simplest estimate of the characters’ joint probability that
uses both sequence models in a sensible and symmetric way:

(P(S1[i]|S1[1..i-1]) * P(S2[j]|S2[j]!=S1[i] & S2[1..j-1]) +

P(S2[j]|S2[1..j-1]) * P(S1[i]|S1[i]!=S2[j] & S1[1..i-1])) / 2

= (P(S1[i]|S1[1..i-1]) * P(S2[j]|S2[1..j-1])) /

(1/(1-P(S2[j]|S1[1..i-1])) + 1/(1-P(S1[i]|S2[1..j-1))) / 2

When negative logs of the above probabilities are taken
and added to those for insert, delete, match and mismatch,
we have suitable code word lengths (costs) for use in the
DPA. All that is required is the probability of each possible
character value in each position alongS1 conditional on the
preceding values, similarly forS2, and these can either be
derived fromM1 andM2 during the DPA or may already be
available ifS1 andS2 have previously been compressed to
assess the null-hypothesis. This can be done to all common
variations of the DPA, for example for the most probable
alignment, for the sum of all alignment probabilities, with
linear or piecewise linear gap-costs.

4.2.1. Implementation and tests
The DPA was modified to accept the predictor components
of compression algorithms as extra parameters—one for
each of the input sequencesS1 and S2. An iterative
EM approach was used to estimate the probabilities of
match, mismatch and indel from the data; it was assumed
that inserts and deletes satisfyP(insert) = P(delete) =
P(indel)/2 although this is trivial to relax. Various models
for sequences were implemented including ‘uniform’, i.e.
two bits per character, and both non-adaptive and adaptive
Markov models of orderk, for various values ofk. A
non-adaptive model contains fixed parameter values which
must either be ‘common knowledge’ or must be included as
part of the length of any message that relies on the model.
An adaptive model can use the sequenceS[1..i − 1], for
example, to estimate parameter values up to that point, when
encodingS[i].

Tests were done using the same 100 pairs of unrelated
sequences generated from the first-order Markov model,
MMg, of Section 4.1.1. Each pair of sequences was aligned
with the modified DPA for model class 2 under three

THE COMPUTER JOURNAL, Vol. 42, No. 1, 1999

COMPRESSION ANDAPPROXIMATE MATCHING 7

TABLE 2. Unrelated sequences fromMMg, alignment with three
models.

-log odds
method null:alignment inference

(i) uniform/uniform 13 +/- 13, 15-, 85+
(ii) MMg/MMg -44 +/- 7, 100-, 0+

(iii) MM1/MM2 -30 +/- 7, 100-, 0+

methods: (i) using a uniform model for bothS1 and S2;
(ii) using MMg for both S1 and S2; (iii) using MM1 for
S1 andMM2 for S2. Method (i) assumed the sequences
to be incompressible.MM1 andMM2 were adaptive first-
order Markov models. Their use in method (iii) amounted to
knowing the general form of the model for the sequences but
not the parameter values of the particular model instances,
a situation common in the real world. (Adaptive models of
this kind cannot be used with the algorithm for model class 1
because they adapt differently to alternative alignments and
hypothetical sequencesR.) For each method, the difference
in message lengths of the null-hypothesis and an optimal
alignment, i.e. their−log odds-ratio, was calculated and
the mean and the standard deviation of this quantity over
the 100 trials were recorded together with the numbers of
positive and negative inferences under the method. The
null-hypothesis and the optimal alignment used the same
population models. Table 2 summarizes the results.

Method (i) implies that most pairs of completely unrelated
sequences generated fromMMg are related, with just 15
exceptions. It is possible to make method (i) firmly
convinced either way merely by adjusting the parameters of
modelMMg. This has serious implications for matching a
new sequence against a library of sequences or for ranking
pairwise match scores in the sequence assembly problem for
example. Method (ii) correctly believes that the pairs of
sequences are unrelated, with the mean being six standard
deviations away from the turn-over point. Method (iii)
believes the pairs of sequences are unrelated, but with less
certainty than method (ii); this is due to method (iii) having
to estimate the parameters of the modelsMM1 andMM2 for
each pair of sequences.

Note that many variations in the details of the general
models and the alignment algorithm are possible. For
example, (i) the models for sequencesS1 and S2 can
be required to be identical, (ii) non-adaptive or adaptive
models [9] can be used, and so on. The cost of encoding
parameter values must be included if models of differing
complexities are to be compared fairly. (In the tests, the
null-hypothesis and the optimal alignment used the same
sequence models and any model costs cancel out in their
−log odds-ratio in this case.)

The tests above show the possibility of alignment
returning false positives unless the statistical properties of
the population of sequences are taken into account. False
negatives are also possible.

In a further series of tests, pairs of related sequences were
generated and aligned using the three methods. A parent
string was generated and mutated with certain probabilities
of mutation to give two child sequencesS1 andS2 which
were then aligned. The parent string was generated
according to some model, here either the uniform model or
MMg. The relative probabilities of changes, insertions and
deletions were kept at 2:1:1 while the overall probability
of mutation was varied. A change necessarily changed
a character to a different value. Inserted and changed
characters were chosen from the probability distribution
implied by the parent’s generating model using the context
at that point in the sequence. For changes, the original
character was removed from the distribution which was
then renormalized before a replacement character value
was sampled. The child sequences were therefore from a
very similar but not necessarily identical population to their
parent unless the latter came from the uniform population.
In the case that the parent came fromMMg, the population
of the children was learned as follows: 100 parents of
length 1000 were generated fromMMg and mutated by the
appropriate amount, a first-order Markov modelMMg′ then
being fitted to the child sequences.MMg′ is similar toMMg
but a little more uniform.

In these tests, a parent sequence of length 100 was
generated from either the uniform population or fromMMg.
The parent was mutated by a certain amount to giveS1
andS2. S1 andS2 were aligned by the modified DPA under
three methods: (i) using a uniform model for bothS1 andS2,
(ii) using MMg′ for both S1 andS2, (iii) usingMM1 for S1
andMM2 for S2, whereMM1 andMM2 were adaptive first-
order Markov models. This was repeated 100 times for each
combination of parent model and mutation level. The mean
and standard deviation of the−log odds-ratio of the null-
hypothesis and an optimal alignment were calculated, and
also the number of positive (inferred related) and negative
(not related) cases. The results are summarized in Table 3.

At first sight the results are disappointing. The pairs
of sequences are siblings, truly related to each other by
descent, so one might hope for 100 positive results when
aligning sequences knowing the true model. In fact it
appears that using the wrong model gives greater accuracy at
inferring relatedness—the uniform model forMMg′ data and
MMg′ for uniform data, with the order-one adaptive models
MM1/MM2 falling in between—but this is an illusion. It
must be remembered that the parent’s children,S1 and
S2, are separated from each other by two mutation stages.
Thus a mutation level of 20%, parent to children, actually
means thatS1 and S2 differ by something approaching
40% mutation and this is very high for an alphabet of size
four. It turns out that by 25% mutation, parent to children,
the alignments obtained for uniform data are frequently
no better than those found for unrelated sequences. For
example, Deken [24] gives lower and upper bounds on the
ratio of the length of an LCS of two unrelated strings to the
length of the strings of 0.55 and 0.72 for uniform data and an
alphabet of size four. In other words, by about 25% mutation
from parent to children, it is often impossible to tell reliably

THE COMPUTER JOURNAL, Vol. 42, No. 1, 1999

8 L. ALLISON, D. POWELL AND T. I. DIX

TABLE 3. Alignment with three models, two kinds of related strings.

|---- True Model of related strings ----|
DPA mutation Uniform mutated MMg’ = MMg mutated
model rate log-odds -ve +ve log-odds -ve +ve

Uniform/ 15% 46+/-18, 0-,100+ 49+/-18, 1-, 99+
Uniform 20% 19+/-18, 14-, 86+ 22+/-15, 10-, 90+

25% -2+/-14, 55-, 45+ 3+/-16, 43-, 57+

MMg’/MMg’ 15% 93+/-21, 0-,100+ 15+/-14, 13-, 87+
20% 60+/-20, 0-,100+ -7+/-13, 68-, 32+
25% 35+/-16, 0-,100+ -16+/-12, 92-, 8+

MM1/MM2 15% 58+/-18, 0-,100+ 26+/-16, 6-, 94+
20% 31+/-17, 2-, 98+ 5+/-13, 36-, 64+
25% 10+/-14, 25-, 75+ -8+/-12, 72-, 28+

Key: -log odds Null:Alignment +/- S.D., -ve cases, +ve cases
Mutation: change:insert:delete probability ratios 2:1:1

that two sibling sequences from a uniform population are
related, on the basis of an optimal alignment: the use of the
true model is giving correct results.

A similar but stronger effect occurs when the parent
comes fromMMg and hence the children come fromMMg′.
MMg and MMg′ give AT-rich sequences and there is the
further correlation between neighbouring characters, so the
effective alphabet size is less than four (in the sense that
sequences can be compressed to less than two bits per
character). Deken’s bounds for the LCS ratio are 0.76 to
0.86 for a uniform binary alphabet and 0.61 to 0.78 for
a uniform ternary alphabet. Alignment knowing the true
model, hereMMg′, is again doing the right thing and it
becomes impossible to reliably identify siblings inMMg′,
on the basis of an optimal alignment, when they differ from
their parent by between 15% and 20% mutation.

Table 3 therefore really shows that alignment using the
wrong model often gives false positives, i.e. it claims
sequences are related even when their optimal alignment
is seen to be ‘unacceptable’ if the population’s true
characteristics are taken into account. (Note that a method
which always stated that two strings were related, regardless
of the evidence, would of course return 100 positive cases
on all of the test data sets.) However, there is another side
to this. The sets ofuniquesequences in the populations
from the uniform model, fromMMg′ and indeed from most
other models are the same; it is only the sequences’ prior
probabilities that differ from population to population. One
can occasionally get sequences typical ofMMg′ under the
uniform model andvice versa. Sequences typical ofMMg′
are unusual under the uniform model (andvice versa); they
have rare features and atypical characteristics. We can
consider the uniform data to be a set of rare or unusual
examples underMMg′ and we can consider theMMg′ data

to be a set of rare or unusual examples under the uniform
model. If two sequences sharing some rare features are
given, one is more likely to be justified in calling them
related than otherwise. So we also see that alignment
using the wrong model is likely to give false negatives,
particularly for sequences that are distantly related and
unusual. Such sequences can however be shown to be related
given knowledge of what is typical.

Note that the algorithm for model class 1 (Section 4.1)
gave similar results to those in Table 3 for those cases where
it could be applied, i.e. using the fixed uniform andMMg
models for sequenceR.

4.3. Discussion

It was pointed out earlier that an alignment and the null-
hypothesis are both just hypotheses, that the difference in
message lengths is their posterior−log odds-ratio and that
this gives a significance test for alignments. This can also be
related to the common practice of ‘shuffling’ for correcting
alignment costs (or scores): two sequences,S1 and S2,
are aligned and get a certain costC. The sequences are
then shuffled, givingS1′ and S2′ respectively, which are
aligned to get a different costC ′. S1 and S2 are not
considered to be related, and any alignment ofS1 with S2
is discounted, unlessC is ‘significantly’ better thanC ′ [6].
S1′ is an ‘average’ sequence from the same zero-order
Markov model asS1, similarly for S2′ and S2. Aligning
S1′ with S2′ is like aligning two average strings from the
same zero-order populations of sequences asS1 and S2,
assuming thatS1 andS2 do indeed come from zero-order
populations. It is the case that for unrelated strings, an
optimal alignment has a message length greater than the
null-hypothesis with high probability [22]. Summing the
probabilities of all alignments leads to a shorter message

THE COMPUTER JOURNAL, Vol. 42, No. 1, 1999

COMPRESSION ANDAPPROXIMATE MATCHING 9

length, but one that is still greater than that of the null-
hypothesis. (We use the message length terminology here
because it is difficult to combine scores over all alignments
except in a coding or probabilistic framework.) So for zero-
order populations of sequences, the message length (cost)
of an optimal alignment ofS1′ andS2′ is somewhat greater
than that of the null-hypothesis in our framework but when
allowing a suitable confidence interval aroundC ′ the effect
of the correction is similar—for zero-order populations.

The present work usesS1 and S2 encoded under the
null-hypothesis to judge the significance of any alignment
etc. that claims to relateS1 to S2. This is efficient to
compute if there are efficient compression algorithms for
S1 and S2. The model for a population of sequences
can be almost any model at all provided only that it
has an associated compression algorithm, for example it
can be based on order-k Markov models, on finite-state
automata, on mixtures of these, etc. In contrast it is hard
to see how to shuffleS1 and S2 while maintaining their
statistical properties under an arbitrary model, although
Fitch describes how to do this for first-order models
and Altschul and Erickson [25] examine the problem of
maintaining the frequencies of pairs and triples of characters.
One could also fit an arbitrary model toS1 and to S2,
generate a pair of random strings from these models, align
the random strings to get a cost,C ′′, and repeat many times
but this is inefficient.

A crucial limitation of shuffling is that it takes place
outside the main alignment process. It cannot change the
rank ordering of the alignments of two given sequences but
only changes the criterion for acceptability, i.e. it might
simply indicate that a bad alignment is bad while missing
a good alignment. It was argued in the introduction,
and is incorporated in the new algorithms, that the local
information content should be able to change the rank
ordering of alignments during the search and, in particular,
change which is optimal.

Note that this paper is concerned with conventional order-
preserving alignments. However, the ‘approximate repeats
model’ of DNA sequences can be used to obtain a non-
order-preserving alignment of two compressible sequences
by using it to analyse their concatenation [17].

5. CONCLUSIONS

The non-randomness, or equivalently the compressibility, of
sequences should be taken into account when finding an
optimal alignment or when summing over all alignments
to calculate the probability of their being related. Doing
so weights high information content and low information
content subsequences appropriately in selecting between
alternative alignments and in choosing an optimal one.
This can be seen to place more emphasis on matching
features of sequences, although it is not a matter that some
subsequence is or is not a feature—it is rather a matter of
degree based on the information content. It also allows a fair
comparison with the null-hypothesis, i.e. that the sequences
are unrelated.

The idea of using compressibility in alignment has
been made precise and two interpretations have been
given, one of which corresponds to the sequence assembly
problem and the other to the general alignment problem.
An O(n2) alignment algorithm has been described for
the first interpretation under finite-state models of non-
random sequences in conjunction with finite-state models
of mutation or relation. An O(n2) alignment algorithm
has been described for the second interpretation provided
either that there are sequence compression algorithms with
complexity no worse than O(n2) or that the probability
distributions over characters,P(S[i] = x |S[1..i − 1]), are
otherwise available on a position-by-position basis along
each sequence.

Tests show that optimal alignment can give both false-
positives, i.e. infer that unrelated sequences are related, and
also false-negatives unless the properties of the population
of sequences are taken into account during alignment.
An obvious consequence is that the rank ordering of
approximate matches of a sequence against a sequence
database will probably be incorrect unless the properties of
the sequence populations are considered.

Finally, this paper completely begs the question of what
is a good statistical model of a population of sequences
to use with the new alignment algorithms. It can do
nothing else because the answermust be ‘it just depends
on the application area’. A model should be based on any
prior knowledge that is available about the source of the
sequences. There is recent work on the compression of DNA
[15, 16, 17] for example and our strong preference is to use
compression as the criterion by which to judge competing
models. A general model should be used when there is little
prior knowledge but the number of parameters of the model
should be small compared to the amount of data.

ACKNOWLEDGEMENTS

The authors would like to thank Rohan Baxter, David Dowe,
Peter Tischer, Chris Wallace and other members of the
Central Inductive Agency for discussions on many varied
topics that helped to inspire this work.

REFERENCES

[1] Hirschberg, D. S. (1975) A linear space algorithm for
computing maximal common subsequences.Comm. Assoc.
Comp. Mach., 18, 341–343.

[2] Levenshtein, V. I. (1965) Binary codes capable of correcting
deletions, insertions and reversals.Dokl. Akad. Nauk SSSR,
163, 845–848 (Engl. transl. (1966)Sov. Phys.–Dokl., 10, 707–
710).

[3] Sellers, P. H. (1974) An algorithm for the distance between
two finite sequences.J. Combinatorial Theory, 16, 253–258.

[4] Needleman, S. B. and Wunsch, C. D. (1970) A general
method applicable to the search for similarities in the amino
acid sequence of two proteins.J. Mol. Biol., 48, 443–453.

[5] Allison, L. (1993) Normalization of affine gap costs used in
optimal sequence alignment.J. Theor. Biol., 161, 263–269.

[6] Fitch, F. M. (1983) Random sequences.J. Mol. Biol., 163,
171–176.

THE COMPUTER JOURNAL, Vol. 42, No. 1, 1999

10 L. ALLISON, D. POWELL AND T. I. DIX

[7] Wootton, J. C. (1997) Simple sequences of protein and DNA.
In Bishop, M. J. and Rawlings, C. J. (eds),DNA and Protein
Sequences Analysis, pp. 169–183. IRL Press, Eynsham, UK.

[8] Wallace, C. S. and Boulton, D. M. (1968) An information
measure for classification.Comp. J., 11, 185–194.

[9] Boulton, D. M. and Wallace, C. S. (1969) The information
content of a multistate distribution.J. Theor. Biol., 23, 269–
278.

[10] Claverie, J.-M. and States, D. J. (1993) Information
enhancement methods for large scale sequence analysis.
Comput. Chem., 17, 191–201.

[11] Karp, R. M. (1993) Mapping the genome: some combina-
torial problems arising in molecular biology. In25th ACM
Symp. Theory of Comp., pp. 278–285. ACM Press, New York.

[12] Shannon, C. E. (1948) A mathematical theory of communica-
tion. Bell Syst. Technical J., 27, 379–423, 623–656.

[13] Langdon, G. G. (1984) An introduction to arithmetic coding.
IBM J. Res. Development, 28, 135–149.

[14] Grumbach, S. and Tahi, F. (1994) A new challenge for
compression algorithms: genetic sequences.Inf. Proc.
Management, 30, 875–886.

[15] Rivals, E. and Dauchet, M. (1997) Fast discerning repeats
in DNA sequences with a compression algorithm. InProc.
Genome Informatics Workshop, Tokyo, pp. 215–226.

[16] Loewenstern, D. and Yianilos, P. N. (1997) Significantly
lower entropy estimates for natural DNA sequences. InData
Compression Conf., DCC ’97, pp. 151–160. IEEE Press, Los
Alamitos, CA.

[17] Allison, L., Edgoose, T. and Dix, T. I. (1998) Compression of

strings with approximate repeats. InProc. Intelligent Systems
in Molecular Biology, ISMB98, pp. 8–16. AAAI Press, Menlo
Park, CA.

[18] Bains, W. (1986) The multiple origins of the human Alu
sequences.J. Mol. Evol., 23, 189–199.

[19] Gotoh, O. (1982) An improved algorithm for matching
biological sequences.J. Molec. Biol., 162, 705–708.

[20] Baum, L. E. and Eagon, J. E. (1967) An inequality
with applications to statistical estimation for probabilistic
functions of Markov processes and to a model of ecology.
Bull. AMS, 73, 360–363.

[21] Baum, L. E., Petrie, T., Soules, G. and Weiss, N. (1970) A
maximization technique occurring in the statistical analysis
of probabilistic functions of Markov chains.Ann. Math. Stat.,
41, 164–171.

[22] Allison, L., Wallace, C. S. and Yee, C. N. (1992) Finite-state
models in the alignment of macromolecules.J. Molec. Evol.,
35, 77–89.

[23] Powell, D., Allison, L., Dix, T. I. and Dowe, D. L.
(1998) Alignment of low information sequences. InProc.
4th Australasian Comp. Sci. Theory Symp., CATS ’98, Perth,
pp. 215–229. Springer.

[24] Deken, J. (1983) Probabilistic behaviour of longest common
subsequence length. In Sankoff, D. and Kruskal, J. B. (eds),
Time Warps, String Edits and Macromolecules, pp. 359–362.
Addison Wesley, Reading, MA.

[25] Altschul, S. F. and Erickson, B. W. (1985) Significance
of nucleotide sequence alignment: a method for random
sequence permutation that preserves dinucleotide and codon
usage.Mol. Biol. Evol., 2, 526–538.

THE COMPUTER JOURNAL, Vol. 42, No. 1, 1999

