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A population of sequences is called non-random if there is a statistical model and an associated
compression algorithm that allows members of the population to be compressed, on average. Any
available statistical model of a population should be incorporated into algorithms for alignment
of the sequences and doing so changes the rank order of possible alignments in general. The
model should also be used in deciding if a resulting approximate match between two sequences
is significant or not. It is shown how to do this for two plausible interpretations involving pairs of
sequences that might or might not be related. Efficient alignment algorithms are described for quite
general statistical models of sequences. The new alignment algorithms are more sensitive to what
might be termed ‘features’ of the sequences. A natural significance test is shown to be rarely fooled
by apparent similarities between two sequences that are merely typical of all or most members of
the population, even unrelated members.
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1. INTRODUCTION lclﬁIrrprel—l—lTlsionllﬁﬂ?/ap;l)lmximatﬁllmatching

An alignment of two sequences shows how they could COMPrehension/of-/appropriate/m-eaning
be related, i.e. how they can be matched, approximately.
A particular model for relating sequences defines a cost FIGURE 1. Example alignment.
or alternatively a score, to be optimized when finding an
optimal alignment. Typical models focus on the similarities
and differences between the sequences, trying to maximizeoperation can be given a cost or a score, and one can then
the number of matches between characters, for example thesearch for an optimal alignment. Matches are good and are
longest common subsequence (LCS) [1], or to minimize the given low costs or high scores. Mutations are bad and are
number of differences, for example edit distance [2, 3], or to given high costs or low scores.
do both in some combination [4]. There is generally atacit  The costs (or scores) used in alignments can be viewed
assumption that the sequences themselves are random, in thigom an information theory point of view. There are two
sense of being incompressible, or that any non-randomnessparts to such costs—those associated with the alignment
is limited to a simple skew in the frequency of use of itself [5] and those associated with the characters of the
individual characters; it is the aim of this paper to remove sequences. The two parts are often bundled together
this assumption. and not considered separately. Separating them allows
Figure 1 shows an example alignment of the sequencesone to consider and to model the process by which two
‘compression and approximate matching’ and ‘comprehen- sequences differ and also to consider and to model the
sion of appropriate meaning’. Spaces have been replaced byopulation of sequences. This leads to more accurate models
‘I' to make them visible. The sequences have been paddedfor approximate matching of sequences and to computer
out with a special null pseudo-character, denoted by ‘—', so programs that give better results than otherwise.
that they have the same length. Matches are emphasized by Failing to correctly model the population of sequences
a vertical bar, ', between the matched characters. If the can, for example, lead to a large number of false-positive
first sequence is considered to be the parent, although thisclose matches when comparing a new sequence against a
is an arbitrary choice, then a column with a ‘—’ in the top collection. This has long been recognized as a problem
row represents an insertion and a column with a ‘-’ in the in genetic databases, for example Fitch [6] discusses a
bottom row represents a deletion. No column may contain correction based on randomizing sequences and retesting.
two ‘—’'s. A column with different (real) characters in the Wootton [7] describes another method of masking-out
top and bottom rows represents a change, also known as aegions of low ‘compositional complexity’ before looking
mismatch. A match is sometimes called a copy. for matches so as to reduce false positives. (Compositional
An alignment shows one way of editing one sequence complexity is there defined as the entropy of the multi-state
into another using point, that is character, mutations. Eachdistribution [8, 9] in sliding windows of some fixed length.)
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AA||/|-\|'|AA ...AI|B>”C|3|DE... 2. COMPRESSION AND NON-RANDOMNESS
- AAAAA... ~ABCDE... A population of sequenceg,, is said to be ‘non-random’ if
. .. there is a statistical mod& and an associated compression
0 (i algorithm m(), such that () mIm(S) = S and
(i) Im(S)| < | on average, for sequencés chosen
FIGURE 2. Low and high information content matches. from F. |x| denotes the length of a sequenceneasured

in bits. The definition of non-random may seem strange
to some. On the one hand, the existence of such an
m() obviously shows the population to be non-random.

L ) Conversely, a population being non-random must mean that
The *xnu’ program (Claverie and States [10]) also performs here is some systematic bias in its composition although this

masking out. It can be used to preprocess protein searchyight pe subtle. Any such bias will allow an algorithm to
strings and masks out any tandem repeats with a periodmage better than chance predictions of the sequences and
of four or less that have a specified degree of similarity. oa4 t0 a compression algorithm. We shall sometimes abuse
Masking-out is drastic because low complexity regions \giation and write aboun() as if it were the model.

contain some, not zero, informgtion and may themselves be ability to compress sequences comes from repetition,
of interest. The methods described here show how to attaChpattern and structure within them. As a familiar example,

the appropriate weight to low and high information sections « ;' 5imost invariably follows ‘g’ in English text (‘Qantas’
of sequences for quite general notions of complexity. We being an exception) which allows the u to be encoded at
also show tha'F false-negatives are possible if the populationVery little cost. It is now realized that data compression
of sequences is not correctly modelled. essentially consists of two parts—prediction and encoding.
We consider two general classes of model for matching sphannon’s theory of communication [12] shows that an
pairs of sequences. In the first class, it is assumed that eacltem | of probability P(1) is given a code word of length
sequence is a noisy observation of one hypothetical, real_|ogz(p(|)) bits in an optimal code. A predictor makes
sequence. This corresponds to some laboratory situationspredictions about the next item and an encoder allocates
for example to the sequence assembly problem [11]. In code words on that basis. The decoder uses an identical
the second class of model, there is no hypothetical real predictor. Predictors are based on statistical models of
sequence; the objective is to align two sequences thatthe data and modelling is now seen to be the hardest part
are of equal standing. In both model classes, sequencegf data compression: the best model leads to the greatest
are assumed to be non-random in the sense of beingcompression. An arithmetic encoder [13] is capable of
compressible; this is discussed further in the next section.  approaching the theoretical limits of encoding arbitrarily
The non-randomness of sequences should be taken intclosely, even down to fractions of a bit. In this work we
account in their alignment. For example, assuming that runsyse predictors which yield probabilities of characters given
of repeated characters are common, Figure 2 shows matcheghe preceding context, i.€(S[i] = x|S[1..i — 1]) wherex
on low information content, i.e. compressible, subsequencesranges over the alphabet.
‘AAAAA and high information content, i.e. incompressible, There is often prior knowledge about a population of
subsequences ‘ABCDE’ that might occur in alignments.  sequences. For example, if DNA sequences were random,
It is intuitively obvious that partial match Figure 2i that is if each character (each ba#eCGT}) was equally
is good but that Figure 2ii is more significant. The likely to occur in a position and if each position’s value
subsequence ‘ABCDE’ is more surprising than ‘AAAAA, was independent of its neighbours’ values, it would be
for the assumed model, and the fact that it occurs in both impossible to do better than to allocate each character a
sequences is strong evidence for those sections being relategdyvo-bit code. However, low-order Markov models compress
whereas ‘AAAAA is more likely to have occurred twice DNA to about 1.9 bits per character and more sophisticated
merely by chance. Consequently partial match Figure 2ii models do rather better [14,15,16,17]. Some sections of
should give a greater benefit to an alignment than Figure 2i. DNA are highly compressible. Many short sequences, such
If an alignment could only contain match Figure 2i or as TATA boxes, are known to occur in DNA. Runs of ‘A's
2ii but not both, then it would be better for it to contain known as poly-A, (AT} and (CG) sequences also occur
Figure 2ii. However, if runs of repeated characters were more often and at greater length than ‘by chance’. As
rare and alphabetically ordered runs were common, the rolesanother example, the Alu's [18] are a family of sequences,
would be reversed! each about 300 characters long, which occur hundreds of
In the following, it is shown how to make precise the thousands of times in human DNA. A typical Alu sequence
intuition from the above example. Sequence alignment is about 87% similar to the consensus sequence.
algorithms that generalize common alignment algorithms  If some pattern or structure amongst a population of
by incorporating various models of sequence compressionsequences is known and if it is statistically significant then
are described. The examples given use the DNA alphabetit can be used to compress the sequences. For example, if
{ACGT}, but the methods are applicable to sequences overtrying to compress DNA, one could have a special codeword
other alphabets. to indicate the presence of an Alu sequence, which would
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be followed by an encoding of the differences from the
consensus Alu. The allocation of such an Alu code word
would add very slightly to the coding of non-Alu stretches
of DNA, so that one would lose out overall if Alu’s did not
occur sufficiently often and with sufficient fidelity to justify
this action. In this way compression gives a significance test
on any hypothetical pattern or structure that is claimed.

A model for a population of sequences might be based on
prior knowledge or, failing that, one might choose a general,
parameterized model and fit it to a particular data set. For
example, one might assume a Markov model of some deder
and estimate its parameters from the data.

3. ALIGNMENTS OF RANDOM SEQUENCES

Point-mutation models are commonly used to describe the

The probabilities computed in variants of the DPA are
very small for sequences of realistic lengths and would cause
arithmetic underflow, so it is better to compute with their
negative logs:
z=0
either

g( ) = min( ) -- find an optimal alignment

or
a( ) -- sum probability of all alignments

2(P1)-log  2(P2) = -log

= logplus( )
where logplus(-log 2(P1+P2)

f() =+

c(x,X)

-log 2(P(match) * P(x))

c(xy) dog  2(P(mismatch) * P(xy | xI=y))
cx™) = -log 2(P(delete) * P(x))
(%) = -log 2(P(insert) * P(x))

This also corresponds to a coding or information theory
interpretation and it is natural to imagine transmitting the

mutation of sequences and the relationship of one sequenc&€duences to a receiver and to speak of the ‘message length
to another. The basic operations are to copy (alias match),(@fter Shannon’s communication theory) of an alignment
change (alias mismatch), insert or delete a character. Thd22l: say. Note that all logs are taken to base two, giving

generic dynamic programming algorithm (DPA) of Figure 3
can be used with a variety of point-mutation models and

‘bits’ as the unit of measurement, in what follows.
The converse of the hypothesis that the two sequences are

costs to find an optimal alignment of two sequences, S1 angrelated forms a natural null-hypothesis that the sequences

S2, of lengths~ n, in O(n?) time.
The DPA can be made to calculate the longest common

arose quite independently and its information content is
simply

subsequence (LCS), the edit distance and other functions ofig1| + |s2

two sequences by making suitable choicegfax), f () and

g(). The popular linear and piecewise linear gap-costs [19]
can also be included by storing extra state information in
each entryM[i, j1, and by making suitable choices of),

f () andg().

For given probabilities, P(match), P(mismatch),
P(insert) and P(delete), which must sum to 1.0, the
following instantiation of the dynamic programming
algorithm finds a most probable alignment of two given
seguences:

z =1 -- NB

g( ) = max( )

f()=rx

c(x,X) = P(match) * P(x)

c(x,y) = P(mismatch) * P(x,y | x!=y)
c(x," ") = P(delete) * P(x)

c("_"x) = P(insert) * P(X)

The actual alignment can be found by a trace-back of the
choices made byg(). If P(match) etc. are not known
in advance, an iterative expectation maximization (EM)
approach [20, 21] can be used to estimate them.

Note that two different alignments are two different or

provided thatS1 and S2 are random. On the other hand,
if S1 andS2 are compressible by algorithm(), the true
information content o51 andS2 under the null-hypothesis
is

Im(S1)[+|m(s2)]

No hypothesis with a message length greater than that of the
null-hypothesis is ‘acceptable’.

4. GIVING A COST TO ALIGNMENTS OF
COMPRESSIBLE SEQUENCES

Next consider the problem of calculating a natural cost for a
given alignment of two sequences drawn from a population
of non-random sequences. This allows two alignments to
be compared so that we can say which one is better. The
search problem, i.e. finding an optimal alignment, is also
considered. It will be seen that almost any model of non-
random sequences can be incorporated into assigning costs
to alignments although not all models lead to efficient search
algorithms.
Recall that a population of sequencés,is non-random

exclusive hypotheses of how the two sequences are related(or compressible or of low information content) if there is

so the alignments’ probabilities may legitimately be added.

some modeM with a compression algorithmm() such that

Furthermore, if the sequences are related under the point/M(S)| < [S| on average for sequences drawn frdm

mutation model then it must be by some alignment. So,
summing all alignment probabilities gives the probability

We should usan() in costing alignments for two reasons.
Firstly, m() is rightly used in the null-hypothesis to compress

that the two sequences arose in some related but unspecifieghe individual sequences and will give it an unfair advantage
way; a specific alignment is a nuisance parameter if one justover alignments unless they usg) as well. Secondlyn()

wants to know if the sequences are related, but not how [22].
The resulting DPA still runs in ?) time:

a() =+ -z f) & c() otherwise as above
P(S1 & S2 | related) = SUMJall alignments L] P(S1 & S2 & L)

should influence which alignments are more or less optimal
as suggested in the introduction. There seem to be two
starting points for trying to incorporata() into alignments,

each of which leads to a class of models. The first class
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M[O, 0] = z

for each i in 1 .. Sl.length
M[i,0] = f( M[i-1, O ], c(S1[i], """ ) ) -- Boundary

for each j in 1 .. S2.length
M[O,j] = f( M[O, j-1], c("_", S2[]) ) -- conditions

for each i in 1 .. Sl.ength and j in 1 .. S2.length
M[i,j] = g(f(M[i-1, j-1], c(S1[i], S2[j])), -- (mis)match
f(M[i-1, j 1, c(S1[i], " " ), - delete S1]i]
f(M[i,  j-1], c("_", S2[j]))) -- insert S2[j]

FIGURE 3. Generic DPAM[i, j] = cost or score o81[1..i1& S2[1..]].

has been introduced elsewhere by Powelal. [23] and is of S1 and S2 for all such R. The omission is that
sketched here for completeness; it also inspired the secondhere could be an arbitrary number of characterfithat

class which is more general and new. were missed in both observatior® and S2—such an
occurrence will have a very low probability, but a non-zero
4.1. Model class 1: two observations of one real one. The converse, that bo81 andS2 contain erroneous
sequence observations of non-existent characters, is easily allowed.

o S ) With the above reservation, a scan along the alignment
In this situation it is supposed that there is one r_eal but can calculateP(columngL1..i]|R[i] = ch) conditional upon
unknown sequenceR, and that two observations of i1 each possible character ‘ch’. In model class 2, see later,
and S2, are made by experiment. The experiments are ”OtsequenceR is done away with altogether.
perfectand introduce experimental error so that the observed The search problems are (i) to find an optimal alignment
sequences are not identical to each other. One Pr0b|emtogether with R and (ii) to find an optimal alignment
is to infer the real sequence, another is to find an optimal summing over all possibleR’s consistent with it. The
alignment of S1 and S2, and a third is to estimate the  sgjution is to treatR as a hidden variable by adding extra
probability thatS1 and S2 are in fact related in this way.  gtates to the entries of the DPA matrM [i, j]1 which
Something close to this situation occurs within the sequencerepresent costs conditional on a particular character value

assembly problem [11]. _ for the current position irR.
Each of the given sequences (observations) may be the

result of experimental error on an unknown real sequence., 4 1 Implementation and tests

Being a real sequence, the latter would be compressibleThe DPA is modified for this first model class [23] by

bydm(). Tr;et o(;)serv:dl siﬂuenﬁes Wr?UId betcfmt?]ress'bleincluding extra state information in each entMTi, j].
unt ert as;a aHe mo e_f; ougk per asqs m()j 520 el dsameR—state, | 1-state and|2-state refer to ‘use the real
extent ask. HOWEVer, I R Were known,s1 an cou sequenceR’, ‘insert in S1' and ‘insert inS2’ respectively;

be encoded as a list of differences fréfor a given model see Figure 4. A transition to thB-state indicates that a

Ef exi)her;_melr;;gl errors. The information 81 andS2 for a character fronR has been used; it may have been copied,
ypotheticalx 1S changed or deleted i81 and similarly inS2. A transition

ImR)| - log  2(P(S1|R)) - log 2(P(S2|R)) to 11 indicates that a character has been inserted $ito
relative to R, and similarly for12. An insertion into
R is dealt with by the model for sequenced, with its sequencesl does not affect sequencBsor S2. To avoid

compression algorithnm(), and S1 and S2 by the model any double-counting, we insist that any insertions i6io
of experimental error for which one of the variations on the occur before any adjacent insertions if8®, i.e. there is no
edit distance serves well. direct transition from staté2 to 1 1.

For a given model of sequences, a model of experimental The arcs represent possible transitions to the states of cell
error and an alignment also specifyiigy the information M[i, j] from its north, west and north-west neighbours. If
content of this complete hypothesis can be readily an optimal real sequencRk, is sought then the algorithm is
calculated. Note that if only an alignment is required, made to choose the most probable incoming arc to each state.
R becomes a nuisance parameter and it is necessary tarhe probability of S1 and S2, given that they are related
sum over all possiblgR’s to avoid bias. It is possible to in this way through anyR, can be found by summing the
achieve this in @n) time, given an alignment, for finite-  probabilities of paths into each state. An optimal alignment,
state models of sequences with one small approximation:over all R, can be found by a trace-back which chooses the
if we limit R to having at most one character per column maximum cell-to-cell probability ‘flow’.
of the alignment, it is possible to sum the probabilities  For the case of first-order Markov models of real
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S1 TABLE 1. Unrelated sequences, alignment with two model$or

MMg, generating model:

. A C G T odds for S[i+1]|S[i]
J_

'
'
|
'
'
r
'
'
'
'
1
'
'
'
'
'
'
1
'
1
1
'
'
1
'
'
]
|
'
'

B
@ AlJl1109
@ C 19119 ie. sequences are
S[]G19119 AT-rich
R @ Analysis:
-log odds

. method null:alignment  inference
J (i) uniform 13 +/- 13, 11-, 89+
(i) MMg -25 +/- 8, 100-, O+

..... \\ T9111
v !

O
®

S2 many false positives, but method (ii) correctly infers that the
pairs are not related.
FIGURE 4. DPA for model class 1; arrivals iM[i, j1. Key: R, It is possible in principle to use other models for
char fromR; 11, ins' char inS1; 12: ins char inS2. the R sequence, provided that they have finite memory, by

appropriate elaboration of the state informationMii, j]

while the algorithm’s complexity remains(6?) but with a
sequences, thdR-state contains information conditional Worse constant. Second-order models are probably the upper
upon each possib|e character value for the Correspondindimit in practice. Model class 2, below, is much more flexible
position of theR sequence, for examp{@CGT} for DNA. in this regard. Linear gap-costs etc. for indels [5, 19] could
Thus all character-to-character transitions in sequeRce also be included in model class 1 by elaboration ofthe
can be given their appropriate code-lengths. The and and| 2-states.
| 2-states do not involve a character frdRy They carry
forward information conditional on the last character of the 4.2. Model class 2: averaging two sequences
R sequence for the resumption & state transitions. In

practice the state information il[i, j] can be combined and we wish to know if and how they are directly related.

and reduced somewhat [23]. :
. e They may have a common ancestor but this cannot be used
Tests were done using artificial sequences generated from

a first-order Markov modelMMg. This choice was made in the way thatR was used in model class 1 because it
purely on the basis of sir’nplic.ity and we do not argue would merely give us three real sequences to compare and

that MMg is a true model of any real population. 100 not simplify thgproblem.

. The probability of two related sequences can be expressed
pairs of sequences of length 100 were generated from. ; i

. . in various ways:

MMg. The sequences in a pair are completely unrelated
except in coming fromMMg. Of course they do share P(s1&s2 | related) = P(S1) . P(S2 | S1, related)
something, perhaps a kind of convergent evolution, but they gff,j%al'l zﬁ;fmler?é Lr]e";f(esf’l) 6528 L)
are unrelated in the sense that they are not siblings and one
was not derived from the other. Each pair of sequenceslf the sequences are compressib8, by modelM1 and
was aligned using the algorithm described above under twoalgorithmm1(), S2 by modelM2 and algorithrmm2(), then
methods: (i) using a uniform model f&, (ii) usingMMg as Im1(SL)| = —log,(P(S1)) and|m2(S2)| = —10g,(P(S2)),
the model forR. For each method, the difference in message assuming thaml() and m2() give optimal compression
lengths of the null-hypothesis and an optimal alignment, under M1 and M2, respectively. Note that i1 and
i.e. their—log odds-ratio, was calculated and the mean and S2 really are related then good choices fdrl and M2
the standard deviation of this quantity over 100 trials were cannot be very different but they might be instances of
recorded. A positive (versus negative) mean implies that a parameterized model with slightly different parameter
the elements of the pairs are inferred to be related (versusvalues for example. In order to cod® andS2 one might
unrelated) on average, under the method. The number ofcode S1, compressing it withm1(), and then code&2 as
positive and negative inferences were also recorded. Forthe differences fronsl, but this does not take advantage
each method, the null-hypothesis and the alignment used theof M2. Alternatively one might codé&2, compressing
same population model. Table 1 summarizes the results. Weit with m2(), and then codesl, but now failing to take
see that use of the incorrect, uniform model leads to a greatadvantage ofM1. These two schemes could even give

In this situation there are two real sequencgks,and S2,
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different message lengths which is unsatisfactory becausesavings in good alignments come from, in transmitting

we want an encoding irlog, (P (S1& S2|related)) bits. We
really want to blends1 andS2 in some way. There is good

both S1[i] and S2[j] for little more than the cost of one
character. Now there are two sources of information about

reason to prefer a symmetric method which was realized forthe character value:M1 and M2. A prediction of the
random sequences by coding them through their alignment.valuex can come fronM1 or M2 or some combination of

We may nevertheless sometimes write as tho8ghs the
‘parent’ andS2 the ‘child’, although this is quite arbitrary
and the roles can be reversed.

Informally, an alignment can be thought of as representing
a fuzzy sequence. For example, the alignment of ‘com-
pression and approximate matching’ with ‘comprehension

them. The following average is the simplest estimate of the
character’s probability that uses both sequence models in a
sensible and symmetric way:

(P(X|S1[1..i-1])+P(x|S2[1..j-1]))/2

A mismatch also involve$§l[i] and S2[ j] but now they

of appropriate meaning’in Figure 1 can be taken to representare known to differ. The characters’ joint probability can

the set of possible sequences beginnjogmpression .,
comprension. ., comprehssion ., etc} These alternatives
could be taken as possible values Rrin model class 1
but removing any such expliciR leads to a more flexible
method. The alternatives will be compressible to varying
degrees. We try for a way of using their compressibility,
without committing to any particular one, to transmit an
alignment ofS1 and S2. Also remember that if an @?)
optimal-alignment algorithm is to be realized, it is desirable

that the amount of work done for each character pair,

be estimated by multiplyingP(S1[i]|S1[1..i — 1]) and
P(S2[j]1S2[1..j — 1]) after renormalizing the latter to
account forS2[ j ] differing from S1[i]. A different estimate
comes from a mirror calculation, that interchanges the roles
of S1 andS2. The average of these two alternatives is the
simplest estimate of the characters’ joint probability that
uses both sequence models in a sensible and symmetric way:

(P(S1[IS1[L..i-1]) * P(S2[il|S2[il'=S1[i] & S2[1.j-1]) +
P(S2[ilIS2[1.j-1]) * P(SL[lIS1[i]!=S2[] & Si[1.i1]) ) / 2

(S1[i], S2[j1), be bounded by a constant and that there be = FEMISLL-F]) * PE2ISL 1) |

no backtracking to revise the work at a later stage.

The following examples illustrate the various cases that

the DPA examines in its central step:

S1: ... ACG ACG ... ACG AC-
[ [ [ I
S2: ... ACG LGACT L AC- ....ACT
j j j j
match mismatch delete insert

(U(A-P(S2[]ISL.i-1])) + 1/(1-P(S1[i]|S2[1.j-1))) / 2

When negative logs of the above probabilities are taken
and added to those for insert, delete, match and mismatch,
we have suitable code word lengths (costs) for use in the
DPA. All that is required is the probability of each possible
character value in each position alo8f conditional on the
preceding values, similarly fa82, and these can either be
derived fromM 1 andM2 during the DPA or may already be
available if S1 andS2 have previously been compressed to
assess the null-hypothesis. This can be done to all common

Omitting the characters of the two sequences, an alignmentvariations of the DPA, for example for the most probable

can be coded as a sequence dwveatch, mismatch, insert,
deleté. These give the structure of the alignment while
ignoring the sequences’ character values. To encalde

and S2 the characters must also be included. The case4.2.1.

of insertions gives us a clue of how to do this. If the
characters ofS2 were independently generated then we

alignment, for the sum of all alignment probabilities, with
linear or piecewise linear gap-costs.

Implementation and tests
The DPA was modified to accept the predictor components
of compression algorithms as extra parameters—one for

could do no better than give a fixed code word (cost) to eacheach of the input sequencedl and S2. An iterative

character value regardless of the contexSh However,

it is assumed here tha2 is compressible and that the
probability distribution forS2[j] depends orS2[1..] — 1]
so the probability ofS2[j] in an insertion can be estimated
as

P(S2[j]|S2[1..j-1])

Deletions are similar to insertions and the probability of
Sl1[i] in a deletion can be estimated as

P(S1[i]|S1[1..i-1])

EM approach was used to estimate the probabilities of
match, mismatch and indel from the data; it was assumed
that inserts and deletes satisB(inser) = P(delete =
P(indel)/2 although this is trivial to relax. Various models
for sequences were implemented including ‘uniform’, i.e.
two bits per character, and both non-adaptive and adaptive
Markov models of ordek, for various values ok. A
non-adaptive model contains fixed parameter values which
must either be ‘common knowledge’ or must be included as
part of the length of any message that relies on the model.
An adaptive model can use the sequete.i — 1], for

i.e. the probability and hence the code word length or cost example, to estimate parameter values up to that point, when

for the character inserted i& (respectively deleted from
S1) comes from the modél 2 for S2 (M1 for S1). Note that
these values depend only &[1..i — 1] andS2[1..j — 1].

In the case of a match, the character vatue: Sl[i] =

encodingS[i].

Tests were done using the same 100 pairs of unrelated
sequences generated from the first-order Markov model,
MMg, of Section 4.1.1. Each pair of sequences was aligned

S2[j] need only be transmitted once; this is where the with the modified DPA for model class 2 under three
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TABLE 2. Unrelated sequences frokiMg, alignment with three In a further series of tests, pairs of related sequences were
models. generated and aligned using the three methods. A parent

string was generated and mutated with certain probabilities
of mutation to give two child sequenc& and S2 which

-log odds were then aligned. The parent string was generated
method null:alignment inference . . .
() uniform/uniform 13 +- 13 15- 85+ according to some model, here either the uniform model or
(i) MMg/MMg -44 +- 7, 100-, O+ MMg. The relative probabilities of changes, insertions and
(iiiy MM1/MM2 -30 +- 7, 100-, O+ deletions were kept at 2:1:1 while the overall probability

of mutation was varied. A change necessarily changed
a character to a different value. Inserted and changed
characters were chosen from the probability distribution
implied by the parent’s generating model using the context
methods: (i) using a uniform model for botl and S2; at that point in the sequence. For changes, the original
(if) using MMg for both S1 and S2; (iii) using MM1 for character was removed from the distribution which was
S1 andMM2 for S2. Method (i) assumed the sequences then renormalized before a replacement character value
to be incompressibleMM1 andMM2 were adaptive first-  was sampled. The child sequences were therefore from a
order Markov models. Their use in method (iii) amounted to very similar but not necessarily identical population to their
knowing the general form of the model for the sequences but parent unless the latter came from the uniform population.
not the parameter values of the particular model instances,In the case that the parent came fridivig, the population
a situation common in the real world. (Adaptive models of of the children was learned as follows: 100 parents of
this kind cannot be used with the algorithm for model class 1 length 1000 were generated frdMg and mutated by the
because they adapt differently to alternative alignments andappropriate amount, a first-order Markov mobi#¥g’ then
hypothetical sequencd®) For each method, the difference being fitted to the child sequence#dMg’ is similar toMMg
in message lengths of the null-hypothesis and an optimal but a little more uniform.
alignment, i.e. their—log odds-ratio, was calculated and In these tests, a parent sequence of length 100 was
the mean and the standard deviation of this quantity over generated from either the uniform population or frivtvig.
the 100 trials were recorded together with the numbers of The parent was mutated by a certain amount to ¢te
positive and negative inferences under the method. TheandS2. S1 andS2 were aligned by the modified DPA under
null-hypothesis and the optimal alignment used the samethree methods: (i) using a uniform model for b&handS2,
population models. Table 2 summarizes the results. (i) using MMg' for both S1 andS2, (iii) using MM1 for S1
Method (i) implies that most pairs of completely unrelated andMM2 for S2, whereMM1 andMM2 were adaptive first-
sequences generated frdwMg are related, with just 15  order Markov models. This was repeated 100 times for each
exceptions. It is possible to make method (i) firmly combination of parent model and mutation level. The mean
convinced either way merely by adjusting the parameters of and standard deviation of thelog odds-ratio of the null-
modelMMg. This has serious implications for matching a hypothesis and an optimal alignment were calculated, and
new sequence against a library of sequences or for rankingalso the number of positive (inferred related) and negative
pairwise match scores in the sequence assembly problem fonot related) cases. The results are summarized in Table 3.
example. Method (ii) correctly believes that the pairs of At first sight the results are disappointing. The pairs
sequences are unrelated, with the mean being six standar@f sequences are siblings, truly related to each other by
deviations away from the turn-over point. Method (iii) descent, so one might hope for 100 positive results when
believes the pairs of sequences are unrelated, but with lessaligning sequences knowing the true model. In fact it
certainty than method (ii); this is due to method (iii) having appears that using the wrong model gives greater accuracy at
to estimate the parameters of the modéld1 andMM2 for inferring relatedness—the uniform model fdMg’ data and
each pair of sequences. MMg' for uniform data, with the order-one adaptive models
Note that many variations in the details of the general MM1/MM2 falling in between—but this is an illusion. It
models and the alignment algorithm are possible. For must be remembered that the parent’s childr&h, and
example, (i) the models for sequenc&% and S2 can S2, are separated from each other by two mutation stages.
be required to be identical, (ii) non-adaptive or adaptive Thus a mutation level of 20%, parent to children, actually
models [9] can be used, and so on. The cost of encodingmeans thatS1 and S2 differ by something approaching
parameter values must be included if models of differing 40% mutation and this is very high for an alphabet of size
complexities are to be compared fairly. (In the tests, the four. It turns out that by 25% mutation, parent to children,
null-hypothesis and the optimal alignment used the samethe alignments obtained for uniform data are frequently
sequence models and any model costs cancel out in theimo better than those found for unrelated sequences. For
—log odds-ratio in this case.) example, Deken [24] gives lower and upper bounds on the
The tests above show the possibility of alignment ratio of the length of an LCS of two unrelated strings to the
returning false positives unless the statistical properties of length of the strings of 0.55 and 0.72 for uniform data and an
the population of sequences are taken into account. Falsealphabet of size four. In other words, by about 25% mutation
negatives are also possible. from parent to children, it is often impossible to tell reliably
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TABLE 3. Alignment with three models, two kinds of related strings.

|---- True Model of related strings ----|

DPA mutation Uniform mutated MMg' = MMg mutated
model rate log-odds -ve +ve log-odds -ve +ve
Uniform/  15% 46+/-18,  0-,100+ 49+/-18,  1-, 99+
Uniform 20% 19+/-18, 14-, 86+ 22+/-15, 10-, 90+
25% -2+/-14, 55-, 45+ 3+/-16, 43-, 57+
MMg'/MMg’ 15% 93+/-21,  0-,100+ 15+/-14, 13-, 87+
20% 60+/-20,  0-,100+ -7+/-13, 68-, 32+
25% 35+/-16,  0-,100+ -16+/-12, 92-, 8+
MM1/MM2  15% 58+/-18,  0-,100+ 26+/-16,  6-, 94+
20% 31+/-17,  2-, 98+ 5+/-13, 36-, 64+
25% 10+/-14, 25-, 75+ -8+/-12, 72-, 28+

Key: -log odds Null:Alignment +/- S.D., -ve cases, +ve cases
Mutation: change:insert:delete probability ratios 2:1:1

that two sibling sequences from a uniform population are to be a set of rare or unusual examples under the uniform
related, on the basis of an optimal alignment: the use of themodel. If two sequences sharing some rare features are
true model is giving correct results. given, one is more likely to be justified in calling them

A similar but stronger effect occurs when the parent related than otherwise. So we also see that alignment
comes fromMMg and hence the children come fraviMg'. using the wrong model is likely to give false negatives,
MMg and MMg' give AT-rich sequences and there is the particularly for sequences that are distantly related and
further correlation between neighbouring characters, so theunusual. Such sequences can however be shownto be related
effective alphabet size is less than four (in the sense thatdiven knowledge of what s typical.
sequences can be compressed to less than two bits per Note that the algorithm for model class 1 (Section 4.1)
character). Deken’s bounds for the LCS ratio are 0.76 to 9ave similar results to those in Table 3 for those cases where
0.86 for a uniform binary alphabet and 0.61 to 0.78 for it could be applied, i.e. using the fixed uniform akfig
a uniform ternary alphabet. Alignment knowing the true Models for sequenck.
model, hereMMd/, is again doing the right thing and it ) )
becomes impossible to reliably identify siblings MMg/, 4.3. Discussion
on the basis of an optimal alignment, when they differ from ¢ was pointed out earlier that an alignment and the null-
their parent by between 15% and 20% mutation. hypothesis are both just hypotheses, that the difference in

Table 3 therefore really shows that alignment using the message lengths is their posterielog odds-ratio and that
wrong model often gives false positives, i.e. it claims this gives a significance test for alignments. This can also be
sequences are related even when their optimal alignmentrelated to the common practice of ‘shuffling’ for correcting
is seen to be ‘unacceptable’ if the population’s true alignment costs (or scores): two sequencsk,and S2,
characteristics are taken into account. (Note that a methodare aligned and get a certain cd&3t The sequences are
which always stated that two strings were related, regardlessthen shuffled, givingS1’ and S2’ respectively, which are
of the evidence, would of course return 100 positive casesaligned to get a different cos€’. S1 and S2 are not
on all of the test data sets.) However, there is another sideconsidered to be related, and any alignmenSbfwith S2
to this. The sets ofiniquesequences in the populations is discounted, unless is ‘significantly’ better tharC’ [6].
from the uniform model, frooMMg’ and indeed from most ~ S1’ is an ‘average’ sequence from the same zero-order
other models are the same; it is only the sequences’ priorMarkov model asS1, similarly for S2 and S2. Aligning
probabilities that differ from population to population. One S1’ with S2" is like aligning two average strings from the
can occasionally get sequences typicaMiflg’ under the same zero-order populations of sequencesShsand S2,
uniform model andrice versa Sequences typical dfiMg’ assuming thatl and S2 do indeed come from zero-order
are unusual under the uniform model (arice versy; they populations. It is the case that for unrelated strings, an
have rare features and atypical characteristics. We canoptimal alignment has a message length greater than the
consider the uniform data to be a set of rare or unusual null-hypothesis with high probability [22]. Summing the
examples undeMMg’ and we can consider tHdMg' data probabilities of all alignments leads to a shorter message
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length, but one that is still greater than that of the null-  The idea of using compressibility in alignment has
hypothesis. (We use the message length terminology herébeen made precise and two interpretations have been
because it is difficult to combine scores over all alignments given, one of which corresponds to the sequence assembly
except in a coding or probabilistic framework.) So for zero- problem and the other to the general alignment problem.
order populations of sequences, the message length (costhn O(n?) alignment algorithm has been described for
of an optimal alignment 081’ andS2' is somewhat greater  the first interpretation under finite-state models of non-
than that of the null-hypothesis in our framework but when random sequences in conjunction with finite-state models
allowing a suitable confidence interval arouBdthe effect of mutation or relation. An @?) alignment algorithm
of the correction is similar—for zero-order populations. has been described for the second interpretation provided
The present work useSl and S2 encoded under the either that there are sequence compression algorithms with
null-hypothesis to judge the significance of any alignment complexity no worse than @2) or that the probability
etc. that claims to relat&Sl to S2. This is efficient to distributions over character®(Si] = x|91..i — 1)), are
compute if there are efficient compression algorithms for otherwise available on a position-by-position basis along
Sl and 2. The model for a population of sequences each sequence.
can be almost any model at all provided only that it  Tests show that optimal alignment can give both false-
has an associated compression algorithm, for example itpositives, i.e. infer that unrelated sequences are related, and
can be based on ordkrMarkov models, on finite-state  also false-negatives unless the properties of the population
automata, on mixtures of these, etc. In contrast it is hard of sequences are taken into account during alignment.
to see how to shuffleSl and S2 while maintaining their ~ An obvious consequence is that the rank ordering of
statistical properties under an arbitrary model, although approximate matches of a sequence against a sequence
Fitch describes how to do this for first-order models database will probably be incorrect unless the properties of
and Altschul and Erickson [25] examine the problem of the sequence populations are considered.
maintaining the frequencies of pairs and triples of characters. Finally, this paper completely begs the question of what
One could also fit an arbitrary model 81 and to S2, is a good statistical model of a population of sequences
generate a pair of random strings from these models, alignto use with the new alignment algorithms. It can do
the random strings to get a co€t/, and repeat many times  nothing else because the answmeunstbe ‘it just depends
but this is inefficient. on the application area’. A model should be based on any
A crucial limitation of shuffling is that it takes place prior knowledge that is available about the source of the
outside the main alignment process. It cannot change thesequences. There is recent work on the compression of DNA
rank ordering of the alignments of two given sequences but [15, 16, 17] for example and our strong preference is to use
only changes the criterion for acceptability, i.e. it might compression as the criterion by which to judge competing
simply indicate that a bad alignment is bad while missing models. A general model should be used when there is little
a good alignment. It was argued in the introduction, prior knowledge but the number of parameters of the model
and is incorporated in the new algorithms, that the local should be small compared to the amount of data.
information content should be able to change the rank
ordering of alignments during the search and, in particular, ACKNOWLEDGEMENTS
change which is optimal.

Note that this paper is concerned with conventional order- The authors would like to thank Rohan Baxter, David Dowe,
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model’ of DNA sequences can be used to obtain a non- tonics that helped to inspire this work
order-preserving alignment of two compressible sequences P P P '
by using it to analyse their concatenation [17].
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