public class Dirichlet extends Simplex
K
-Simplex. It is often applied to
the proportions (relative abundancies) of categories.
(An estimator is not yet implemented.)Modifier and Type | Class and Description |
---|---|
class |
Dirichlet.M
The fully parameterised Dirichlet Model (probability distribution);
the UnParameterised Model is
here . |
Simplex.Uniform
R_D.Forest, R_D.ForestSearch, R_D.Independent, R_D.NrmDir, R_D.Transform
UPModel.Est
Function.Native.WithInverse
Function.Cts2Cts, Function.Cts2Cts2Cts, Function.CtsD2CtsD, Function.HasInverse, Function.Native, Function.Native2, Function.Native3
Value.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple
Constructor and Description |
---|
Dirichlet(Value K)
K, the degrees of freedom in the data, that is
one less than the
dimension of the data. |
Modifier and Type | Method and Description |
---|---|
int |
K()
The degrees of freedom of the K-Simplex sub-space
|
static void |
main(java.lang.String[] argv)
A very few, very rudimentary tests; also see
Test . |
Dirichlet.M |
sp2Model(double m1,
double m2,
Value alpha)
Return a "fully parameterised" Dirichlet
Model . |
Vector |
stats(boolean add,
Value ss0,
Value ss1)
Combine sufficient statisticses 'ss0' and 'ss1' additively
(add=true), or remove ss1 from ss0 (add=false).
|
Vector |
stats(Vector ds,
int lo,
int hi)
The default sufficient statistics
here . |
ds2L1stats, ds2NorL1stats, ds2Nstats, transform
apply, defnParams, estimator, stats, stats, toString, transform
public int K()
Simplex.D()
.public Dirichlet.M sp2Model(double m1, double m2, Value alpha)
Model
.public Vector stats(Vector ds, int lo, int hi)
here
.public Vector stats(boolean add, Value ss0, Value ss1)
UPModel
stats(ds,lo,hi)
.public static void main(java.lang.String[] argv)
Test
.