public class Multinomial.M extends UPFunctionModel.M
'n'
to a Vector of 'k'
frequencies that
sum to 'n'. M's condModel(id)
is a Trials(n)
.TM()
.
The UnParameterised function-model is Multinomial
.Modifier and Type | Class and Description |
---|---|
class |
Multinomial.M.Trials
|
Model.Defaults, Model.Transform
Value.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple
Modifier and Type | Field and Description |
---|---|
double[] |
nlPrs
The negative log probabilities of the
'k' categories. |
Constructor and Description |
---|
M(double msg1,
double msg2,
Value prs)
'prs' is the probabilities of the 'k' categories.
|
Modifier and Type | Method and Description |
---|---|
Multinomial.M.Trials.TM |
condModel(Value n)
|
double |
nlLH(Value ss)
Given sufficient statistics,
ss =
stats(ds) , of a data-set, ds,
return the negative log LikeliHood, nlLH(ss), of ds. |
asUPModel, condNl2Pr, condNlPr, condPr, nlPr, pr, random, random
asEstimator, m1m2sp, msg, msg1, msg1bits, msg2, msg2bits, msgBits, nl2LH, nl2Pr, random, randomSeries, statParams, stats, stats, sumNlPr, transform, type, zeroTriv
public double nlLH(Value ss)
Model
stats(ds)
, of a data-set, ds,
return the negative log LikeliHood, nlLH(ss), of ds. Make sure that
nlLH(ss), ss = stats(ds,lo,hi)
,
and any Estimator
are consistent!public Multinomial.M.Trials.TM condModel(Value n)
condModel
in class FunctionModel