public static class Permutation.Uniform extends Permutation
Modifier and Type | Class and Description |
---|---|
class |
Permutation.Uniform.M
Mdl should be sufficient for most purposes, but
here is the class of "fully parameterised" Uniform Models of
Permutations. |
Permutation.Uniform
UPModel.Est, UPModel.Transform
Function.Native.WithInverse
Function.Cts2Cts, Function.Cts2Cts2Cts, Function.CtsD2CtsD, Function.HasInverse, Function.Native, Function.Native2, Function.Native3
Value.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple
Modifier and Type | Field and Description |
---|---|
protected double |
log_fact_N
log(N!), the cost of stating a Permutation
of
|
Permutation.Uniform.M |
Mdl
The (trivially) fully parameterised Uniform Model
of Permutations; also see its class,
M . |
protected int |
N
The problem-defining parameter is 'N' (here as an int)
for Permutations of
|
Modifier and Type | Method and Description |
---|---|
Estimator |
estimator(Value t)
The trivial Estimator that is a Uniform
Model 's. |
int |
N()
Permutations of
|
Permutation.Uniform.M |
sp2Model(double msg1,
double msg2,
Value sp)
sp2Model(0, m2, ()) returns a
Model . |
Value.Real |
stats(boolean add,
Value ss0,
Value ss1)
Combine sufficient statisticses 'ss0' and 'ss1'.
|
Value.Real |
stats(Vector ds,
int lo,
int hi)
Given a data-set ds[lo,hi) of Permutations return
sufficient statistics ss=ds.wts[lo,hi).
|
random
protected final int N
protected final double log_fact_N
public final Permutation.Uniform.M Mdl
M
.public int N()
Permutation
N
in class Permutation
public Permutation.Uniform.M sp2Model(double msg1, double msg2, Value sp)
Model
.public Value.Real stats(Vector ds, int lo, int hi)
public Value.Real stats(boolean add, Value ss0, Value ss1)