public class Adaptive extends Discretes.Bounded
M
. The model (idea) is that a data-set is
homogeneous, and the data are independent, but M
does not care what the probabilities of the various Values
actually are. It offers no opinion about the probabilities so
M
has no statistical parameters.
Note, it is debatable whether 'Adaptive' should be a Model of
Bounded Discretes, as here, or rather a Model of Vector of
Bounded Discretes. These are not necessarily exclusive, and we do
want the present form as a comparison to Discretes.Bounded
.
Note, for a data-set 'ds',
nlLH
(stats
(ds)) nlPr
(dsi) Mixture
, that require nlPr(d).Modifier and Type | Class and Description |
---|---|
class |
Adaptive.M
Model
Mdl should be enough
for most purposes but here is its class, fully (trivially)
parameterised (M). |
Discretes.Bounded, Discretes.Shifted, Discretes.Uniform
UPModel.Est, UPModel.Transform
Function.Native.WithInverse
Function.Cts2Cts, Function.Cts2Cts2Cts, Function.CtsD2CtsD, Function.HasInverse, Function.Native, Function.Native2, Function.Native3
Value.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple
Modifier and Type | Field and Description |
---|---|
Adaptive.M |
Mdl
Adaptive fully (trivially) parameterised. |
Constructor and Description |
---|
Adaptive(Value dp)
Definition parameters
nlLH(ss) . |
Modifier and Type | Method and Description |
---|---|
Vector |
alpha()
The "offsets" to be the initial values of the frequency
counters of data Values by
nlLH(ss) . |
Value.Tuple |
bounds()
|
Estimator |
estimator(Value t)
Return the trivial Estimator,
Mdl.
asEstimator(t) ,
of Mdl . |
static void |
main(java.lang.String[] argv)
See
Test . |
Adaptive.M |
sp2Model(double msg1,
double msg2,
Value sp)
Return a
Model with 2-part message lengths, msg1=0
and msg2, and statistical parameter sp=(), triv. |
Vector |
stats(boolean add,
Value ss0,
Value ss1)
For sufficient statisticses 'ss0' and 'ss1', either combine
ss0 and ss1 (add=true), or remove ss1 from ss0 (add=false).
|
Vector |
stats(Vector ds,
int lo,
int hi)
Return sufficient statistics, that is
frequency
counts, for elements [lo, hi) of data-set 'ds'. |
public final Adaptive.M Mdl
Adaptive
fully (trivially) parameterised.public Adaptive(Value dp)
nlLH(ss)
. Setting all
public Value.Tuple bounds()
Discretes.Bounded
bounds
in class Discretes.Bounded
public Vector alpha()
nlLH(ss)
.public Vector stats(boolean add, Value ss0, Value ss1)
stats(ds,lo,hi)
.public Adaptive.M sp2Model(double msg1, double msg2, Value sp)
Model
with 2-part message lengths, msg1=0
and msg2, and statistical parameter sp=(), triv.public Estimator estimator(Value t)
asEstimator(t)
,
of Mdl
.public static void main(java.lang.String[] argv)
Test
.