public abstract class Discretes extends UPModel
Value.Enum
data. The fully parameterised model is
Discretes.M
. Particularly see Discretes.M.nlPr_n(int)
and
Discretes.M.random_n()
.Modifier and Type | Class and Description |
---|---|
static class |
Discretes.Bounded
The class of UnParameterised Models over Bounded Discrete data
such as
|
class |
Discretes.M
The (abstract) class of fully parameterised Models of
Discrete data-spaces.
|
class |
Discretes.Shifted
This
UnParameterised Model of Discretes shifted by
+offset . |
static class |
Discretes.Uniform
The UnParameterised Uniform Model (distribution) on data in
statistical parameter."
Also see the fully parameterised Discretes.Uniform.M ,
and Continuous.Uniform . |
UPModel.Est, UPModel.Transform
Function.Native.WithInverse
Function.Cts2Cts, Function.Cts2Cts2Cts, Function.CtsD2CtsD, Function.HasInverse, Function.Native, Function.Native2, Function.Native3
Value.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple
Modifier and Type | Method and Description |
---|---|
Discretes.M |
apply(Value sp)
Given statistical parameters, sp, return a Model,
sp2Model(0, 0, sp) ,
i.e., one that is not estimated, having zero part 1 and
part 2 message lengths. |
static Vector |
NandSum(Vector ds)
Some Discrete Models, such as
Geometric0UPM.M , have
(N,sum) as sufficients statistics, Model.stats(la.maths.Vector) by calling NandSum. |
static Vector |
NandSum(Vector ds,
int lo,
int hi)
NandSum for elements [lo, hi). |
Discretes |
shifted(int offset)
Convenience function for
new
Shifted(new Int(offset)) , for example,
Poisson0 .shifted(1) is the unparameterised
Poisson distribution for integers n≥1. |
Discretes |
shifted(Value.Int offset)
Convenience function for new
Shifted(offset) ,
for example, Poisson0 .shifted(1)
is the unparameterised Poisson distribution for integers n≥1. |
abstract Discretes.M |
sp2Model(double msg1,
double msg2,
Value sp)
Given two-part message lengths msg1 & msg2, and statistical
parameter sp, return a fully parameterised
M-Model . |
defnParams, estimator, main, stats, stats, stats, stats, toString, transform
public Discretes(Value sp)
public Discretes.M apply(Value sp)
UPModel
sp2Model(0, 0, sp)
,
i.e., one that is not estimated, having zero part 1 and
part 2 message lengths. (Also see Function.apply(la.la.Value)
.)public abstract Discretes.M sp2Model(double msg1, double msg2, Value sp)
UPModel
public static Vector NandSum(Vector ds)
Geometric0UPM.M
, have
(N,sum) as sufficients statistics, Model.stats(la.maths.Vector)
by calling NandSum. Note the Values of N and
sum are Cts because we may have fractionally weighted data,
say in a Mixture
.public Discretes shifted(int offset)
Shifted(new Int(offset))
, for example,
Poisson0
.shifted(1) is the unparameterised
Poisson distribution for integers n≥1.
Also see Discretes.M.shifted(int)
.public Discretes shifted(Value.Int offset)
Shifted(offset)
,
for example, Poisson0
.shifted(1)
is the unparameterised Poisson distribution for integers n≥1.
Also see Discretes.M.shifted(int)
.