public class Continuous.M.Transform.MM extends Continuous.M
Continuous.M.Transform
;
a Transform.MM "is a" (extends) Continuous.M.
Also see the related but different
Continuous.Transform
.transform(f)
.Continuous.M.Transform
Model.Defaults
Value.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple
Constructor and Description |
---|
MM(double msg1,
double msg2,
Value sp)
Note, msg1=0 and statistical parameter sp=triv, checked.
|
Modifier and Type | Method and Description |
---|---|
double |
nlLH(Value ss)
Use the enclosing Continuous.M.this's nlLH(ss) but
statistics 'ss' come from
Continuous.M.Transform.stats(la.maths.Vector, int, int) . |
double |
nlPdf_x(double x)
M.nlPdf_x(f(x))
− log(|f.d_dx()(x) |),
the second term to "correct" the datum's nlAoM. |
double |
random_x()
Requires '
f ' to have an implemented inverse to work. |
java.lang.String |
toString()
Return a String representation of 'this' fully parameterised Model.
|
asEstimator, asUPModel, m1m2sp, msg, msg1, msg1bits, msg2, msg2bits, msgBits, nl2LH, nl2Pr, pr, random, randomSeries, statParams, stats, stats, sumNlPr, transform, type, zeroTriv
public MM(double msg1, double msg2, Value sp)
public double nlPdf_x(double x)
M.nlPdf_x(f(x))
− log(|f.d_dx()(x)
|),
the second term to "correct" the datum's nlAoM.nlPdf_x
in class Continuous.M
public double nlLH(Value ss)
Continuous.M.Transform.stats(la.maths.Vector, int, int)
.public double random_x()
f
' to have an implemented inverse to work.
Sample with the enclosing Continuous.M.this's random_x()
and apply f
's inverse.random_x
in class Continuous.M
public java.lang.String toString()
UPModel.M
UnParameterised
Model, with its
problem defining parameters, and 'this' M-Model's
statistical
parameter(s).