public abstract class UPModel.M extends Model
UPModel
. A subclass of Model that extends UPModel.M
gets stats(ds...)
"for free" from
UPModel.stats(ds...)
–
if appropriate – similarly toString()
.
Also see Model
.Model.Defaults, Model.Transform
Value.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple
Constructor and Description |
---|
M(double msg1,
double msg2,
Value sp)
Given two-part message lengths, msg1 and msg2, and
statistical parameter(s), sp, construct an M-Model.
|
Modifier and Type | Method and Description |
---|---|
Model |
asGiven(double msg2)
Calls
asGiven(0,msg2) . |
Model |
asGiven(double msg1,
double msg2)
Enables setting the first- and second-part message lengths, msg1
and msg2, after having estimated the statistical parameter(s) of
a Model, say.
|
Value |
stats(boolean add,
Value ss0,
Value ss1)
By default, combine statisticses ss0 and ss1 using the
stats(add,ss0,ss1)
of the the enclosing UPModel . |
Value |
stats(Vector ds,
int lo,
int hi)
Return sufficient statistics ss=stats(ds,lo,hi) of elements
[lo, hi), lo inclusive to hi exclusive,
of data-set 'ds' using the
stats(ds,lo,hi)
of the enclosing UPModel . |
java.lang.String |
toString()
Return a String representation of 'this' fully parameterised Model.
|
asEstimator, asUPModel, m1m2sp, msg, msg1, msg1bits, msg2, msg2bits, msgBits, nl2LH, nl2Pr, nlLH, nlPr, pr, random, random, randomSeries, statParams, stats, stats, sumNlPr, transform, type, zeroTriv
public M(double msg1, double msg2, Value sp)
public Value stats(Vector ds, int lo, int hi)
stats(ds,lo,hi)
of the enclosing UPModel
.
This is often appropriate, but not always, for example,
see BestOf.M.stats(...)
.
Note that ss=M.stats(ds...) must be enough to calculate
M.nlLH(ss)
but UPModel.stats(ds...) must be enough
to estimate
a fully parameterised M-Model.
More on stats [here
].public Value stats(boolean add, Value ss0, Value ss1)
stats(add,ss0,ss1)
of the the enclosing UPModel
.
This is often appropriate, but not always.
Note, ss=M.stats(ds...) must be enough to calculate
M.nlLH(ss)
but UPModel.stats(ds...) must be
enough to estimate a fully parameterised model.
More on stats [here
].public Model asGiven(double msg2)
asGiven(0,msg2)
.public Model asGiven(double msg1, double msg2)
asGiven(msg2)
.public java.lang.String toString()
UnParameterised
Model, with its
problem defining parameters, and 'this' M-Model's
statistical
parameter(s).