public class Discretes.Uniform.M extends Discretes.Bounded.M
Discretes.Uniform.Mdl
should be sufficient for most purposes.
M, the class fully- (trivially) parameterised Uniform
Discrete Model(s) on Model.Defaults, Model.Transform
Value.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple
Constructor and Description |
---|
M(double msg1,
double msg2,
Value sp)
Requires msg1=0, sp=triv.
|
Modifier and Type | Method and Description |
---|---|
double |
nlLH(Value ss)
nlLH(ss), see
Discretes.Uniform.nlLH(la.la.Value) . |
double |
nlPr_n(int n)
Back-room works for
Discretes.M.nlPr(la.la.Value) . |
double |
pr_n(int n)
Back-room works for
Discretes.M.pr(la.la.Value) . |
int |
random_n()
|
asUPModel, bounds, lwb_n, lwb, random, random, randomSeries, type, upb_n, upb
nlPr, pr, shifted
asEstimator, m1m2sp, msg, msg1, msg1bits, msg2, msg2bits, msgBits, nl2LH, nl2Pr, statParams, stats, stats, sumNlPr, transform, zeroTriv
public M(double msg1, double msg2, Value sp)
public double pr_n(int n)
Discretes.M.pr(la.la.Value)
.pr_n
in class Discretes.M
public double nlPr_n(int n)
Discretes.M.nlPr(la.la.Value)
.
(Note, this implementation does not
check that 'n' is in range.)nlPr_n
in class Discretes.M
public double nlLH(Value ss)
Discretes.Uniform.nlLH(la.la.Value)
.public int random_n()
random_n
in class Discretes.Bounded.M