public class Independent.M extends Multivariate.M
Independent
Model.
Also see Dependent.M
.Model.Defaults, Model.Transform
Value.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple
Modifier and Type | Field and Description |
---|---|
Model[] |
ms
The sub-Models making 'this' Independent.M Model.
|
Constructor and Description |
---|
M(double msg1,
double msg2,
Value sps)
Given two-part message lengths, msg1 and msg2, and a
Tuple of statistical parameters, sps, construct a Model
of Tuples from the upms.
|
Modifier and Type | Method and Description |
---|---|
double |
nlLH(Value ss)
Given sufficient statistics,
ss =
stats(ds) , of a
data-set, ds, return the negative log likelihood of ds. |
double |
nlPr(Value d)
The negative log probability of a Tuple-datum, 'd', where the
elements (fields, components, columns) of d are modelled
independently.
|
Value.Tuple |
random()
Return a random Tuple, assuming each of the
sub-Models can play its part. |
Value.Tuple |
stats(boolean add,
Value ss0,
Value ss1)
Calls upon the stats(,,) of the
ms[] . |
Value.Tuple |
stats(Vector ds,
int lo,
int hi)
Given a multivariate data-set, ds, return statistics,
ss, a Tuple of course, one element per sub-
ms . |
functionModel, width
asEstimator, asUPModel, m1m2sp, msg, msg1, msg1bits, msg2, msg2bits, msgBits, nl2LH, nl2Pr, pr, random, randomSeries, statParams, stats, stats, sumNlPr, transform, type, zeroTriv
public M(double msg1, double msg2, Value sps)
public double nlPr(Value d)
public Value.Tuple stats(Vector ds, int lo, int hi)
ms
.
Note that the components of a datum are modelled
independently so an element of ss depends
on just the corresponding column of ds. May or may
not equal Independent.stats(Vector,int,int)
.
More on stats here
.public Value.Tuple stats(boolean add, Value ss0, Value ss1)
ms[]
. May or may
not equal Independent.stats(boolean,Value,Value)
.public double nlLH(Value ss)
stats(ds)
, of a
data-set, ds, return the negative log likelihood of ds.public Value.Tuple random()
sub-Models
can play its part.