public class Intervals extends UPFunctionModel
intervals
(buckets) and give a conditional Model
of od corresponding to each bucket. Note that the input datum may
be continuous in which case it is "discretized." However it is only
required to have a total order. The output datum, od, can be of any type
at all, including Multivariate. The fully parameterised FunctionModel
is M
.Modifier and Type | Class and Description |
---|---|
class |
Intervals.M
|
UPFunctionModel.Est, UPFunctionModel.K
UPModel.Transform
Function.Native.WithInverse
Function.Cts2Cts, Function.Cts2Cts2Cts, Function.CtsD2CtsD, Function.HasInverse, Function.Native, Function.Native2, Function.Native3
Value.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple
Modifier and Type | Field and Description |
---|---|
UPModel |
upm
upm, the UnParameterised Model for the output (dependent)
datum, od.
|
Constructor and Description |
---|
Intervals(Value upm)
The problem defining parameter,
upm , is an
UnParameterised Model suitable for the ouput datum, od. |
Modifier and Type | Method and Description |
---|---|
UPFunctionModel.Est |
estimator(Value ps)
Return an Estimator for
M . |
Intervals.M |
sp2Model(double msg1,
double msg2,
Value sp)
Given two-part message lengths, msg1 and msg2, and statistical
parameters, sp, return a fully parameterised
M . |
Vector |
stats(boolean add,
Value ss0,
Value ss1)
Combine sufficient statisticses 'ss0' and 'ss1' additively
(add=true), or remove ss1 from ss0 (add=false).
|
Vector |
stats(Vector ds,
int lo,
int hi)
Sufficient statistics, ss = stats(ds), for a
data-set, ds, are ds itself, sorted on the input data.
|
apply
public final UPModel upm
parameterised
differently for each interval of the input datum, id.public Intervals.M sp2Model(double msg1, double msg2, Value sp)
M
.sp2Model
in class UPFunctionModel
public Vector stats(Vector ds, int lo, int hi)
public Vector stats(boolean add, Value ss0, Value ss1)
UPModel
stats(ds,lo,hi)
.public UPFunctionModel.Est estimator(Value ps)