public static class UPFunctionModel.K extends UPFunctionModel
K.M
.Modifier and Type | Class and Description |
---|---|
class |
UPFunctionModel.K.M
The fully parameterised Konstant function-model.
|
UPFunctionModel.Est, UPFunctionModel.K
UPModel.Transform
Function.Native.WithInverse
Function.Cts2Cts, Function.Cts2Cts2Cts, Function.CtsD2CtsD, Function.HasInverse, Function.Native, Function.Native2, Function.Native3
Value.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple
Modifier and Type | Field and Description |
---|---|
UPModel |
upm
upm, the UnParameterised Model, to be fully
parameterised and then applied to the
output datum in every input "case" by K.M . |
Constructor and Description |
---|
K(Value upm)
The problem-defining parameter 'upm' is used to set
upm . |
Modifier and Type | Method and Description |
---|---|
UPFunctionModel.Est |
estimator(Value ps)
The Estimator gets the Model for the (every)
output datum, od, from
upm .estimator(ps). |
UPFunctionModel.K.M |
sp2Model(double m1,
double m2,
Value sp)
Two-part message lengths m1 and m2, and statistical parameter
'sp', for fully parameterised
K.M . |
Value |
stats(boolean add,
Value ss0,
Value ss1)
upm .stats(add,.,.). |
Value |
stats(Vector ds,
int lo,
int hi)
Given a data-set, 'ds', sufficient statistics,
ss = upm.stats(ds.col(1),lo,hi), on the
output datum only, are as per
upm . |
apply
public final UPModel upm
parameterised
and then applied to the
output datum in every input "case" by K.M
.public UPFunctionModel.K.M sp2Model(double m1, double m2, Value sp)
K.M
.sp2Model
in class UPFunctionModel
public UPFunctionModel.Est estimator(Value ps)
upm
.estimator(ps).