Modifier and Type | Class and Description |
---|---|
class |
Missing.M
The fully parameterised Model;
Missing is the UnParameterised Model. |
UPModel.Est, UPModel.Transform
Function.Native.WithInverse
Function.Cts2Cts, Function.Cts2Cts2Cts, Function.CtsD2CtsD, Function.HasInverse, Function.Native, Function.Native2, Function.Native3
Value.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple
Modifier and Type | Field and Description |
---|---|
MultiState |
presentUPM
The UnParameterised 2-state Model of whether a data value
is known (present, true) or missing (absent, false).
|
UPModel |
valueUPM
The UnParameterised Model of those data that are known (present).
|
Constructor and Description |
---|
Missing(Value dp)
Problem definition parameter 'dp' sets
valueUPM . |
Modifier and Type | Method and Description |
---|---|
UPModel.Est |
estimator(Value ps)
Return an Estimator of a fully parameterised
Missing.M -Model. |
static Vector |
maybe_J(Vector ds)
For a Vector 'ds' of Value.
Maybe , return a
Vector of those 'v' that are present in ds. |
static Vector |
present(Vector ds)
|
Missing.M |
sp2Model(double msg1,
double msg2,
Value sp)
Given first- and second-part message lengths, msg1 and msg2, and
statistical parameter(s), sp, return a fully parameterised
Missing.M -Model. |
Value.Tuple |
stats(boolean add,
Value ss0,
Value ss1)
Use
presentUPM .stats(...)
and valueUPM .stats(...). |
Value.Tuple |
stats(Vector ds,
int lo,
int hi)
Use
presentUPM .stats(...)
and valueUPM .stats(...) to
calculate the sufficient statistics of ds[lo,hi). |
public final MultiState presentUPM
Missing.M.presentMdl
.public final UPModel valueUPM
Missing.M.valueMdl
.public Missing.M sp2Model(double msg1, double msg2, Value sp)
Missing.M
-Model.public static Vector maybe_J(Vector ds)
Maybe
, return a
Vector of those 'v' that are present in ds. That is values
'Just v' that are not missing. In general the result is
shorter than ds.
Note, it would be rather nice to return a shadow Vector, the
same length as 'ds', and set the weights of missing values to
zero, but is it guaranteed that all stats() etc. avoid even
looking at such (non-)values???public Value.Tuple stats(Vector ds, int lo, int hi)
presentUPM
.stats(...)
and valueUPM
.stats(...) to
calculate the sufficient statistics of ds[lo,hi).
Also see M.stats(...)
.public Value.Tuple stats(boolean add, Value ss0, Value ss1)
presentUPM
.stats(...)
and valueUPM
.stats(...).
Combine statistics ss0 and ss1, either ss0 "+" ss1, or ss0 "-" ss1,
depending on 'add' being true or false.
Also see M.stats(...)
.public UPModel.Est estimator(Value ps)
Missing.M
-Model.
Its parameter 'ps' is a pair, one for the estimators of
presentUPM
and one for valueUPM
.