public class MultiState extends Discretes.Bounded
MultiState.M
Model.
Also see Multinomial
and
[www].Modifier and Type | Class and Description |
---|---|
class |
MultiState.M
A fully parameterised MultiState (Multinomial) Model;
also see the UnParameterised
MultiState Model. |
Discretes.Bounded, Discretes.Shifted, Discretes.Uniform
UPModel.Est, UPModel.Transform
Function.Native.WithInverse
Function.Cts2Cts, Function.Cts2Cts2Cts, Function.CtsD2CtsD, Function.HasInverse, Function.Native, Function.Native2, Function.Native3
Value.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple
Constructor and Description |
---|
MultiState(Value bounds)
bounds = [lwb, upb], on 'this' Model's data-space.
|
Modifier and Type | Method and Description |
---|---|
Value.Tuple |
bounds()
|
UPModel.Est |
estimator(Value t)
Return an Estimator for a MultiState Model; this version has
no non-trivial parameters, but another version could --
if it used a non-uniform prior, say.
|
MultiState.M |
sp2Model(double m1,
double m2,
Value sp)
sp2Model(msg1, msg2, sp), where sp is the statistical parameters,
that is the probabilities, return a fully parameterised
MultiState
Model . |
Vector |
stats(boolean add,
Value ss0,
Value ss1)
For sufficient statisticses 'ss0' and 'ss1', either combine
ss0 and ss1 (add=true), or remove ss1 from ss0 (add=false).
|
Vector |
stats(Vector ds,
int lo,
int hi)
Return sufficient statistics, that is
frequency
counts, for elements [lo, hi) of data-set 'ds'. |
public MultiState(Value bounds)
public Value.Tuple bounds()
Discretes.Bounded
bounds
in class Discretes.Bounded
public MultiState.M sp2Model(double m1, double m2, Value sp)
Model
.public Vector stats(boolean add, Value ss0, Value ss1)
stats(ds,lo,hi)
.public UPModel.Est estimator(Value t)