public class MotifD.M extends Graphs.Motifs.M
Model.Defaults, Model.Transform
Value.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple
Modifier and Type | Field and Description |
---|---|
Discretes.Bounded.M |
mdlE
|
protected Graph[] |
motifs
The motifs (patterns, templates), sorted on |V|,
that can be used to compress a given Graph.
|
int |
sgMaxV
|V| for the smallest and largest of the
motifs[.] . |
int |
sgMinV
|V| for the smallest and largest of the
motifs[.] . |
Modifier and Type | Method and Description |
---|---|
Graph[] |
motifs()
Returns
motifs[] ;
see Graphs.Motifs.M.motifs() . |
double |
nlLH(Value ss)
ss =
stats(ds,lo,hi) , requires
that ss is ds, the Vector (data-set) of Graphs itself. |
double |
nlPr(Value G)
The negative log probability of datum (Graph) G.
|
Graph |
random()
Generate a random Graph according to 'this'
Model . |
msgMotifs, msgMotifs
asEstimator, asUPModel, m1m2sp, msg, msg1, msg1bits, msg2, msg2bits, msgBits, nl2LH, nl2Pr, pr, random, randomSeries, statParams, stats, stats, sumNlPr, transform, type, zeroTriv
public final Discretes.Bounded.M mdlE
Adaptive
) Model of
that part of the Adjacency Matrix not covered by instances of
motifs[.]
. Also see MotifD.upmE
.protected final Graph[] motifs
estimated
.public final int sgMinV
motifs[.]
.
Also see the different MotifD.sgMinV
and sgMaxV.public final int sgMaxV
motifs[.]
.
Also see the different MotifD.sgMinV
and sgMaxV.public M(double msg1, double msg2, Value sp)
public Graph[] motifs()
motifs[]
;
see Graphs.Motifs.M.motifs()
.motifs
in class Graphs.Motifs.M
public double nlLH(Value ss)
stats(ds,lo,hi)
, requires
that ss is ds, the Vector (data-set) of Graphs itself.public double nlPr(Value G)