public class R_D.Independent.M extends R_D.M
R_D.Independent
.R_D.M.Transform
Model.Defaults
Value.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple
Modifier and Type | Field and Description |
---|---|
Continuous.M[] |
mdls
One parameterised
upm -Model, mdls[i],
per column of the data. |
Constructor and Description |
---|
M(double msg1,
double msg2,
Value sps)
Statistical parameters, sps, is a Vector of statistical
parameters, one per
mdls[i] . |
Modifier and Type | Method and Description |
---|---|
double |
nlLH(Value ss)
Given sufficient statistics,
ss =
stats(ds) , of a
data-set, ds, return the negative log likelihood of ds. |
double |
nlPdf(Value d)
The negative log pdf(d) where d is a datum,
a member of RD.
|
Vector |
random()
Return a random (exact) Vector in RD,
one element per
mdls[i] . |
Vector |
stats(boolean add,
Value ss0,
Value ss1)
Combine each ith of the collections of D
statistics, ss0 and ss1, as
mdls[.] does. |
Vector |
stats(Vector ds,
int lo,
int hi)
Return a Vector of statisticses, one element per
parameterised sub-model
mdls[.] . |
asEstimator, asUPModel, m1m2sp, msg, msg1, msg1bits, msg2, msg2bits, msgBits, nl2LH, nl2Pr, pr, random, randomSeries, statParams, stats, stats, sumNlPr, transform, type, zeroTriv
public final Continuous.M[] mdls
upm
-Model, mdls[i],
per column of the data.public double nlPdf(Value d)
public double nlLH(Value ss)
public Vector stats(Vector ds, int lo, int hi)
mdls[.]
.public Vector stats(boolean add, Value ss0, Value ss1)
mdls[.]
does.