public class UPFunctionModel.K.M extends UPFunctionModel.M
Model.Defaults, Model.Transform
Value.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple
Modifier and Type | Field and Description |
---|---|
Model |
mdl
The Model of the output datum, od (for every input, id).
|
Modifier and Type | Method and Description |
---|---|
Model |
condModel(Value id)
Return
mdl ; input datum id is ignored in K. |
double |
nlLH(Value ss)
Negative log likelihood; note, statistics are
ss =
stats(ds) . |
Value |
stats(boolean add,
Value ss0,
Value ss1)
mdl .stats(add,.,.). |
Value |
stats(Vector ds,
int lo,
int hi)
Given a data-set, 'ds', statistics,
ss = mdl.stats(ds.col(1),lo,hi), on the
output datum only, are as per
mdl . |
asGiven, asGiven, toString
asUPModel, condNl2Pr, condNlPr, condPr, nlPr, pr, random, random
asEstimator, m1m2sp, msg, msg1, msg1bits, msg2, msg2bits, msgBits, nl2LH, nl2Pr, random, randomSeries, statParams, stats, stats, sumNlPr, transform, type, zeroTriv
public M(double msg1, double msg2, Value sp)
public Model condModel(Value id)
mdl
; input datum id is ignored in K.condModel
in class FunctionModel
public Value stats(Vector ds, int lo, int hi)
mdl
.
More on stats here
.stats
in class UPFunctionModel.M
public Value stats(boolean add, Value ss0, Value ss1)
mdl
.stats(add,.,.).stats
in class UPFunctionModel.M