public class Mixture.M extends UPModel.M
statistical
-parameters being the
weights and parameters of the classes (clusters, components).
Also see the UnParameterised
Mixture.Model.Defaults, Model.Transform
Value.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple
Constructor and Description |
---|
M(double msg1,
double msg2,
Value sp)
Given statistical parameter sp = (wts, sps),
where 'wts' is the relative abundances and 'sps' the classes'
statistical parameters, construct a Mixture Model.
|
Modifier and Type | Method and Description |
---|---|
Mixture.M |
asGiven(double msg2)
Calls
asGiven(0,msg2) . |
Mixture.M |
asGiven(double msg1,
double msg2)
Enables setting the first- and second-part message lengths, msg1
and msg2, after having estimated the statistical parameter(s) of
a Model, say.
|
Multivariate.M |
asMultivariateM()
'this' Mixture.M is not a
Multivariate.M but
this.asMultivariateM() is – provided that Mixture.upm is
a Multivariate. |
MultiState.M |
mixer()
Return the MultiState that weights the class Models.
|
Model[] |
ms()
Return the sub-Models, one per class (cluster).
|
double |
nlLH(Value ss)
Assumes that
statistics
are the data-set itself. |
double |
nlPr(int i,
Value d)
The negative log probability of datum 'd' according to class 'i'
alone.
|
double |
nlPr(Value d)
The negative log probability of datum d under 'this' Mixture is
|
Value |
random()
Produce (sample) a random Value from 'this' Mixture Model.
|
java.lang.String |
toString()
Return a short description of the Mixture Model.
|
asEstimator, asUPModel, m1m2sp, msg, msg1, msg1bits, msg2, msg2bits, msgBits, nl2LH, nl2Pr, pr, random, randomSeries, statParams, stats, stats, sumNlPr, transform, type, zeroTriv
public M(double msg1, double msg2, Value sp)
public MultiState.M mixer()
public Model[] ms()
public double nlPr(Value d)
Maths.logSum(double[])
.public double nlPr(int i, Value d)
public double nlLH(Value ss)
statistics
are the data-set itself.public Value random()
public Mixture.M asGiven(double msg2)
UPModel.M
asGiven(0,msg2)
.public Mixture.M asGiven(double msg1, double msg2)
UPModel.M
asGiven(msg2)
.public Multivariate.M asMultivariateM()
Multivariate.M
but
this.asMultivariateM() is – provided that Mixture.upm
is
a Multivariate. In particular, this allows such a mixture model
access to Multivariate.M.functionModel(int, la.la.Type)
.