R_D.M.Transform
Model.Defaults
Value.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple
Modifier and Type | Method and Description |
---|---|
abstract double |
nlPdf(Value v)
The negative log probability density of datum Vector v must
be defined on the unit-radius K-sphere, the surface of a D-ball
in RD,
D=K+1 . |
double |
nlPr(Value v)
The negative log probability of datum Vector v; note that
v need not be normalised but it is taken to be a Direction
with v.norm() being "common knowledge".
|
asEstimator, asUPModel, m1m2sp, msg, msg1, msg1bits, msg2, msg2bits, msgBits, nl2LH, nl2Pr, nlLH, pr, random, randomSeries, statParams, stats, stats, sumNlPr, transform, type, zeroTriv
public M(double msg1, double msg2, Value sp)
public abstract double nlPdf(Value v)
D=K+1
. Note, it is
most general if nlPdf(v) does not require v to be normalised.
The given nlPr(v)
adjusts for v.norm().
(If you do require v to be normalised, some other code will be
doing that and you'll still have to check it anyway!)public double nlPr(Value v)
K()
degrees of freedom. nlPr returns
nlPdf(v)
+ v.nlAoM()