public class vMF.M extends Direction.M
R_D.M.Transform
Model.Defaults
Value.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple
Modifier and Type | Field and Description |
---|---|
double |
kappa
The concentration parameter, κ.
|
double |
logCD
The concentration parameter, κ.
|
Vector |
mu
The mean Direction, μ.
|
double[] |
mu_x
The mean Direction
mu as double[]. |
Modifier and Type | Method and Description |
---|---|
double |
kappa()
κ ≥ 0, the concentration parameter.
|
Vector |
mu()
μ, the mean, a Direction in RD.
|
double |
nlLH(Value ss)
Given statistics, ss =
stats(ds) of a
data-set, ds, return the negative log
likelihood of ds. |
double |
nlPdf(Value v)
|
void |
random(double[] x)
Generate a random Direction, a random unit Vector in
RD.
|
nlPr
asEstimator, asUPModel, m1m2sp, msg, msg1, msg1bits, msg2, msg2bits, msgBits, nl2LH, nl2Pr, pr, random, randomSeries, statParams, stats, stats, sumNlPr, transform, type, zeroTriv
public final Vector mu
public final double[] mu_x
mu
as double[].public final double kappa
public final double logCD
public M(double msg1, double msg2, Value sp)
public Vector mu()
public double kappa()
Uniform
Model.
For large κ,
public double nlPdf(Value v)
pdf(v)
for datum Direction v,
return log CD(κ)
nlPr(v)
.nlPdf
in interface HasPdf
nlPdf
in class Direction.M
public double nlLH(Value ss)
stats(ds)
of a
data-set, ds, return the negative log
likelihood
of ds.public void random(double[] x)
R_D.M.random_x()
. See
T.A.Wood, Simulation of the von Mises Fisher distribution,
Communications in Statistics - Simulation and Computation,
23(1), pp.157-164, 1994.