public class LaplaceUPM extends Continuous
MML.Laplace
suffices, but
here is its class. Fully parameterised is Mμb
.
Also see the (negative-) Exponential
.Modifier and Type | Class and Description |
---|---|
class |
LaplaceUPM.M
The fully parameterised Laplace probability distribution.
|
Continuous.Bounded, Continuous.Transform, Continuous.Uniform
UPModel.Est
Function.Native.WithInverse
Function.Cts2Cts, Function.Cts2Cts2Cts, Function.CtsD2CtsD, Function.HasInverse, Function.Native, Function.Native2, Function.Native3
Value.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple
Constructor and Description |
---|
LaplaceUPM(Value dp)
Requires definition parameters dp = triv.
|
Modifier and Type | Method and Description |
---|---|
UPModel.Est |
estimator(Value ps)
Parameters ps = (μmin, μmax,
bmin, bmax).
|
LaplaceUPM.M |
sp2Model(double msg1,
double msg2,
Value sp)
Given two part message lengths, msg1 and msg2, and
statistical parameters, sp, return an
M . |
Vector |
stats(boolean add,
Value ss0,
Value ss1)
Given sufficient statisticses 'ss0' and 'ss1', either
'add' them or remove (add=false) ss1 from ss0.
|
Value |
stats(Vector ds,
int lo,
int hi)
Given a data-set, ds, return statistics,
|
java.lang.String |
toString()
Return a String representation of 'this' UnParameterised Model,
including its problem-
defining parameters. |
transform
public LaplaceUPM(Value dp)
public LaplaceUPM.M sp2Model(double msg1, double msg2, Value sp)
M
.sp2Model
in class Continuous
public Value stats(Vector ds, int lo, int hi)
public Vector stats(boolean add, Value ss0, Value ss1)
public UPModel.Est estimator(Value ps)
parameterised
Laplace probability distribution.