public class MML
extends java.lang.Object
Model
,
FunctionModel
and SeriesModel
.
Each of these may be created by an UnParameterised
Model or its Estimator
.README
,
[the book]
and the
[home page].Modifier and Type | Field and Description |
---|---|
static BetaUPM |
Beta
The UnParameterised
Beta Model. |
static ExponentialUPM |
Exponential
The UnParameterised
Exponential Model. |
static GammaUPM |
Gamma
The UnParameterised
Gamma Model. |
static Geometric0UPM |
Geometric0
The UnParameterised Geometric Model (distribution)
over integers in [0, ∞), capable of
estimating a fully parameterised
Geometric Model. |
static double |
invLog2
1 / loge(2)
|
static Model |
Known
A Model of given, known, common knowledge.
|
static UPModel |
KnownUPM
The unParameterised Model version of
Known . |
static LaplaceUPM |
Laplace
The UnParameterised Laplace probability distribution.
|
static Linear1 |
Linear1
|
static double |
log2
loge(2)
|
static double |
log2PI
loge(2π).
|
static Continuous |
logNormal
|
static double |
logPI
loge(π)
|
static LogStar0UPM.M |
logStar0
The fully (trivially) parameterised log* Model,
or "universal" probability distribution, for integers
n ≥ 0.
|
static LogStar0UPM |
logStar0upm
The UnParameterised log* Model for integers
n ≥ 0.
|
static NormalUPM.M |
N01
The fully parameterised Normal Model,
N〈μ=0,σ=1〉; it might be useful.
|
static NormalUPM |
Normal
The UnParameterised
Normal Model (Gaussian
distribution) capable of estimating
both μ and σ together to give a fully parameterised
Normal M Model . |
static NormalMu |
NormalMu0
The UnParameterised
NormalMu Model with
μ = 0, given, and σ unset. |
static Poisson0UPM |
Poisson0
The UnParameterised Poisson Model (distribution)
over integers in [0, ∞), capable of
estimating a fully parameterised
Poisson Model. |
static java.util.Random |
RNG
Standard practice is for those Models that do implement
Model.random() to use RNG so that a run can be repeated
by setting RNG's seed to a known value. |
static vMF |
vMF3
The
UnParameterised von Mises - Fisher
Model (distribution) of Directions in R3. |
static WallaceInt0UPM.M |
WallaceInt0
The fully (trivially) parameterised Wallace Model
for integers n ≥ 0.
|
static WallaceInt0UPM |
WallaceInt0upm
The UnParameterised Wallace Model for integers
n ≥ 0.
|
Constructor and Description |
---|
MML() |
Modifier and Type | Method and Description |
---|---|
static double |
informativeIncrement(int D)
See p.180 Wallace (2005), the informative explanation
(D parameters estimated) versus the uninformative explanation,
|
static double |
latticeConstant(int D)
latticeConstant(D) (aka κ(D)), the lattice constant for
D dimensions, D ≥ 1, i.e., D parameters,
[www].
|
static void |
main(java.lang.String[] argv)
Runs
Test .main(argv). |
public static final double log2
public static final double invLog2
public static final double logPI
public static final double log2PI
public static final java.util.Random RNG
Model.random()
to use RNG so that a run can be repeated
by setting RNG's seed
to a known value.public static final Model Known
public static final WallaceInt0UPM WallaceInt0upm
WallaceInt0
is fully (trivially) parameterised.public static final WallaceInt0UPM.M WallaceInt0
WallaceInt0upm
is UnParameterised.public static final LogStar0UPM logStar0upm
logStar0
is fully
(trivially) parameterised.
Also see WallaceInt0upm
.public static final LogStar0UPM.M logStar0
logStar0upm
is
UnParameterised. Also see WallaceInt0
.public static final Geometric0UPM Geometric0
estimating
a fully parameterised
Geometric
Model. Also see
[www].public static final Poisson0UPM Poisson0
estimating
a fully parameterised
Poisson
Model. Also see
[www].public static final LaplaceUPM Laplace
public static final ExponentialUPM Exponential
Exponential
Model.public static final NormalUPM Normal
Normal
Model (Gaussian
distribution) capable of estimating
both μ and σ together to give a fully parameterised
Normal M Model
. Also see NormalMu
, and
[www].public static final NormalUPM.M N01
public static final NormalMu NormalMu0
public static final Continuous logNormal
Transformed
Model
that is the log
–Normal
Model. It is for Cts data in (0, ∞) whose log follows
a Normal
distribution. Its statistical parameters
and the parameters of its estimator are as per the Normal.public static final Linear1 Linear1
public static final vMF vMF3
UnParameterised
von Mises - Fisher
Model (distribution) of Directions in R3.public static double latticeConstant(int D)
public static double informativeIncrement(int D)
public static void main(java.lang.String[] argv)
Test
.main(argv).