public class ExponentialUPM extends Continuous
MML.Exponential
and ExponentialUPM.M
should be enough. Also see Laplace
.Modifier and Type | Class and Description |
---|---|
class |
ExponentialUPM.M
The fully parameterised (negative-) Exponential Model, has
statistical parameter
A , its mean. |
Continuous.Bounded, Continuous.Transform, Continuous.Uniform
UPModel.Est
Function.Native.WithInverse
Function.Cts2Cts, Function.Cts2Cts2Cts, Function.CtsD2CtsD, Function.HasInverse, Function.Native, Function.Native2, Function.Native3
Value.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple
Constructor and Description |
---|
ExponentialUPM(Value t) |
Modifier and Type | Method and Description |
---|---|
UPModel.Est |
estimator(Value ps)
The prior is 1/A over [lwb, upb] and, with this prior, the
MML estimate is the sample mean.
|
double |
logF(double N,
double A)
|
ExponentialUPM.M |
sp2Model(double m1,
double m2,
Value A)
Given two-part message lengths msg1 & msg2, and statistical
parameter sp, return a fully parameterised
M-Model . |
Vector |
stats(boolean add,
Value ss0,
Value ss1)
Combine sufficient statisticses 'ss0' and 'ss1' additively
(add=true), or remove ss1 from ss0 (add=false).
|
Vector |
stats(Vector ds,
int lo,
int hi)
The sufficient statistics
|
java.lang.String |
toString()
Return a String representation of 'this' UnParameterised Model,
including its problem-
defining parameters. |
transform
public ExponentialUPM(Value t)
public Vector stats(Vector ds, int lo, int hi)
ExponentialUPM.M.nlLH(la.la.Value)
.
More on stats here
.public Vector stats(boolean add, Value ss0, Value ss1)
UPModel
stats(ds,lo,hi)
.public ExponentialUPM.M sp2Model(double m1, double m2, Value A)
UPModel
M-Model
.
If 'this' UPModel produces a Model m, then
sp2Model(m.msg1(), m.msg2(), m.statParams())
must be equivalent to m. Also see apply(sp)
.sp2Model
in class Continuous
public double logF(double N, double A)
estimator(ps)
.public UPModel.Est estimator(Value ps)
logF(N, A)
.