public class Linear1 extends UPFunctionModel
Continuous
input datum (independent variable),
'x', to a Continuous output datum (dependent variable), 'y',
R→R, y=ax+b+N(0,σ).
Having the trivial problem defining parameter, we really only
need one instance
of the UnParameterised Model.
Also see the fully parameterised
Linear Model.Modifier and Type | Class and Description |
---|---|
class |
Linear1.Est
An Estimator of
|
class |
Linear1.M
|
UPFunctionModel.K
UPModel.Transform
Function.Native.WithInverse
Function.Cts2Cts, Function.Cts2Cts2Cts, Function.CtsD2CtsD, Function.HasInverse, Function.Native, Function.Native2, Function.Native3
Value.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple
Modifier and Type | Field and Description |
---|---|
static Linear1 |
instance
Having a trivial problem-defining parameter, we really
only need one instance of the UnParameterised Linear1 Model.
|
Constructor and Description |
---|
Linear1(Value dp)
The problem defining parameter dp is
triv -ial. |
Modifier and Type | Method and Description |
---|---|
Linear1.M |
apply(Value sp)
Return the fully parameterised Linear1
Model
having statistical parameters sp. |
Linear1.Est |
estimator(Value ps)
Return the [
estimator ]. |
Linear1.M |
sp2Model(double m1,
double m2,
Value sp)
Return the fully parameterised Linear1
Model having
two-part message lengths m1 and m2 and statistical parameters sp. |
Vector |
stats(boolean add,
Value ss0,
Value ss1)
Combine sufficient
statistics
ss0 and ss1 into ss0±ss1, either by addition (add=true) or
by subtraction (add=false). |
Vector.Doubles |
stats(Vector ds,
int lo,
int hi)
Given a data-set, ds, calculate sufficient statistics of ds[lo,hi),
that is the quantities 'N' and the sums over all data
〈x,y〉* of each of the following,
x, x2, xy, y, y2 and y.nlAoM.
|
public static final Linear1 instance
public Vector.Doubles stats(Vector ds, int lo, int hi)
public Vector stats(boolean add, Value ss0, Value ss1)
statistics
ss0 and ss1 into ss0±ss1, either by addition (add=true) or
by subtraction (add=false).public Linear1.M apply(Value sp)
Model
having statistical parameters sp.apply
in class UPFunctionModel
public Linear1.M sp2Model(double m1, double m2, Value sp)
Model
having
two-part message lengths m1 and m2 and statistical parameters sp.sp2Model
in class UPFunctionModel
public Linear1.Est estimator(Value ps)
estimator
].