public class LinearD.M extends UPFunctionModel.M implements HasPdf
Model.Defaults, Model.Transform
Value.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple
Modifier and Type | Field and Description |
---|---|
double[] |
a
Statistical parameter, 'a[D+1]' of the LinearD Model
y=a·x+b+N(0,σ) where 'b' is a[D].
|
double |
sigma
Statistical parameter of the Model
y=a·x+b+N(0,σ).
|
Constructor and Description |
---|
M(double msg1,
double msg2,
Value sp)
Two part message lengths, msg1 and msg2,
and statistical parameters sp.
|
Modifier and Type | Method and Description |
---|---|
NormalUPM.M |
condModel(Value x)
|
double |
nlLH(Value ss)
Given sufficient
statistics ,
ss=stats(ds), of a data-set ds, return the
negative log LikeliHood of ds. |
double |
nlPdf(Value xy)
Negative log pdf of 'y'
given 'x'. |
double |
pdf(Value xy)
pdf of 'y'
given 'x'. |
asUPModel, condNl2Pr, condNlPr, condPr, nlPr, pr, random, random
asEstimator, m1m2sp, msg, msg1, msg1bits, msg2, msg2bits, msgBits, nl2LH, nl2Pr, random, randomSeries, statParams, stats, stats, sumNlPr, transform, type, zeroTriv
public final double[] a
public final double sigma
public M(double msg1, double msg2, Value sp)
public NormalUPM.M condModel(Value x)
condModel
in class FunctionModel
public double nlLH(Value ss)
statistics
,
ss=stats(ds), of a data-set ds, return the
negative log LikeliHood of ds.