public class LinearD.M extends UPFunctionModel.M implements HasPdf
Model.Defaults, Model.TransformValue.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple| Modifier and Type | Field and Description | 
|---|---|
| double[] | aStatistical parameter, 'a[D+1]' of the LinearD Model
          y=a·x+b+N(0,σ) where 'b' is a[D]. | 
| double | sigmaStatistical parameter of the Model
          y=a·x+b+N(0,σ). | 
| Constructor and Description | 
|---|
| M(double msg1,
 double msg2,
 Value sp)Two part message lengths, msg1 and msg2,
          and statistical parameters sp. | 
| Modifier and Type | Method and Description | 
|---|---|
| NormalUPM.M | condModel(Value x) | 
| double | nlLH(Value ss)Given sufficient  statistics,
          ss=stats(ds), of a data-set ds, return the
          negative log LikeliHood of ds. | 
| double | nlPdf(Value xy)Negative log pdf of 'y'  given'x'. | 
| double | pdf(Value xy)pdf of 'y'  given'x'. | 
asUPModel, condNl2Pr, condNlPr, condPr, nlPr, pr, random, randomasEstimator, m1m2sp, msg, msg1, msg1bits, msg2, msg2bits, msgBits, nl2LH, nl2Pr, random, randomSeries, statParams, stats, stats, sumNlPr, transform, type, zeroTrivpublic final double[] a
public final double sigma
public M(double msg1,
         double msg2,
         Value sp)
public NormalUPM.M condModel(Value x)
condModel in class FunctionModelpublic double nlLH(Value ss)
statistics,
          ss=stats(ds), of a data-set ds, return the
          negative log LikeliHood of ds.