public class LinearD.Est extends UPFunctionModel.Est
LinearD.M Linear
-Model.Function.Native.WithInverse
Function.Cts2Cts, Function.Cts2Cts2Cts, Function.CtsD2CtsD, Function.HasInverse, Function.Native, Function.Native2, Function.Native3
Value.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple
Modifier and Type | Field and Description |
---|---|
protected double |
kD
|
protected double |
R_s
1/σ "range", log(sigmaMax)-log(sigmaMin).
|
double |
sigmaMax
Bounds on σ;
prior ,
pr(σ)~1/σ. |
double |
sigmaMin
Bounds on σ;
prior ,
pr(σ)~1/σ. |
Constructor and Description |
---|
Est(Value ps)
The estimators parameter 'ps' is the bounds on σ.
|
Modifier and Type | Method and Description |
---|---|
double |
logF(double N,
double sigma,
Matrix xT_x)
Log Fisher.
|
double |
nlPrior(Vector a,
double sigma)
Negative log prior (probability density).
|
LinearD.M |
ss2Model(Value ss)
Given sufficient
statistics
ss=stats(ds) of a data-set 'ds', estimate a fully
parameterised Linear Model. |
ds2FunctionModel, ds2Model, ss2FunctionModel
defnParams, sp2Model, stats, stats, toString
apply, asUPModel, ds2Model, ds2ModelSp, ss2ModelSp, stats, stats
public final double sigmaMin
prior
,
pr(σ)~1/σ.public final double sigmaMax
prior
,
pr(σ)~1/σ.protected final double R_s
protected final double kD
public Est(Value ps)
public double nlPrior(Vector a, double sigma)
public double logF(double N, double sigma, Matrix xT_x)
public LinearD.M ss2Model(Value ss)
statistics
ss=stats(ds) of a data-set 'ds', estimate a fully
parameterised
Linear Model.ss2Model
in class UPFunctionModel.Est