public class LinearD extends UPFunctionModel
parameterised
LinearD function-model.
The function-model of RD→R is
y=∑j=0..D-1{ajxj
+ b + N0,σ}.
Matrix X=[xi,j], i=0..N-1, j=0..D-1, and
vector Y =[yi], i=0..N-1. As is customary,
define X+ to be X augmented to the right with an
extra column of 1s, and 'b' becomes aD.
Also see Linear1
, R→R.Modifier and Type | Class and Description |
---|---|
class |
LinearD.Est
Estimator for a fully parameterised
LinearD.M Linear -Model. |
class |
LinearD.M
The fully parameterised function-model;
LinearD is the UnParameterised function-model. |
UPFunctionModel.K
UPModel.Transform
Function.Native.WithInverse
Function.Cts2Cts, Function.Cts2Cts2Cts, Function.CtsD2CtsD, Function.HasInverse, Function.Native, Function.Native2, Function.Native3
Value.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple
Constructor and Description |
---|
LinearD(Value D)
The problem definition parameter gives
D() >1. |
Modifier and Type | Method and Description |
---|---|
int |
D()
D(), the dimension of the input variable x:RD in x→y.
|
LinearD.Est |
estimator(Value ps)
|
static void |
main(java.lang.String[] argv)
One very little test.
|
LinearD.M |
sp2Model(double msg1,
double msg2,
Value sp)
Given first- and second-part message lengths, msg1 and msg2, and
statistical parameter(s), sp, return a fully parameterised
LinearD.M Model. |
Value.Tuple |
stats(boolean add,
Value ss0,
Value ss1)
Combine
statistics ss0 and ss1,
either ss0 "+" ss1, or ss0 "-" ss1,
depending on 'add' being true or false. |
Value.Tuple |
stats(Vector ds,
int lo,
int hi)
Calculate the sufficient statistics of ds[lo,hi).
|
apply
public int D()
public Value.Tuple stats(Vector ds, int lo, int hi)
public Value.Tuple stats(boolean add, Value ss0, Value ss1)
statistics
ss0 and ss1,
either ss0 "+" ss1, or ss0 "-" ss1,
depending on 'add' being true or false.public LinearD.M sp2Model(double msg1, double msg2, Value sp)
LinearD.M
Model.sp2Model
in class UPFunctionModel
public LinearD.Est estimator(Value ps)
public static void main(java.lang.String[] argv)