public class LogStar0UPM.M extends Discretes.M
logStar0
should be enough for most purposes,
but here are the classes, fully (trivially) parameterised (M)
and UnParameterised (LogStar0UPM
).Model.Defaults, Model.Transform
Value.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple
Constructor and Description |
---|
M(double msg1,
double msg2,
Value sp)
Note, requires msg1=0 and sp=triv.
|
Modifier and Type | Method and Description |
---|---|
double |
nlLH(Value ss)
Assumes that
statistics
are the data-set itself. |
double |
nlPr_n(int n)
Negative log probability of datum int,
|
int |
random_n()
random_n() is not supported.
|
java.lang.String |
toString()
Return a String representation of 'this' fully parameterised Model.
|
nlPr, pr_n, pr, shifted
asEstimator, asUPModel, m1m2sp, msg, msg1, msg1bits, msg2, msg2bits, msgBits, nl2LH, nl2Pr, random, random, randomSeries, statParams, stats, stats, sumNlPr, transform, type, zeroTriv
public M(double msg1, double msg2, Value sp)
public double nlPr_n(int n)
nlPr_n
in class Discretes.M
public double nlLH(Value ss)
statistics
are the data-set itself.public int random_n()
random_n
in class Discretes.M
public java.lang.String toString()
UPModel.M
UnParameterised
Model, with its
problem defining parameters, and 'this' M-Model's
statistical
parameter(s).