public class NearInverse.M extends Continuous.M
NearInverse
.Continuous.M.Transform
Model.Defaults
Value.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple
Modifier and Type | Field and Description |
---|---|
protected Value.Cts |
delta
The "statistical parameter".
|
double |
logIntegral
The log of the normalising constant.
|
Constructor and Description |
---|
M(double delta_x)
A possible use is for σ's prior in
MML.Normal . |
M(double msg1,
double msg2,
Value delta)
The standard constructor for NearInverse Model;
statistical parameter delta must be a small Value.Cts in
(0, 1) such as 0.1.
|
Modifier and Type | Method and Description |
---|---|
double |
nlLH(Value ss)
Assumes that
statistics
are the data-set itself. |
double |
nlPdf_x(double x)
Nearly - log(1/x), that is + log(x), but not quite,
corresponding to a pdf(x) of ~1/x, but not quite
(as always,
|
nlPdf, random_x, random_x, random, random, random, transform
asEstimator, asUPModel, m1m2sp, msg, msg1, msg1bits, msg2, msg2bits, msgBits, nl2LH, nl2Pr, pr, random, randomSeries, statParams, stats, stats, sumNlPr, transform, type, zeroTriv
protected final Value.Cts delta
public final double logIntegral
public M(double msg1, double msg2, Value delta)
public M(double delta_x)
MML.Normal
.public double nlPdf_x(double x)
nlPdf_x
in class Continuous.M
public double nlLH(Value ss)
statistics
are the data-set itself.