public class NearInverse.M extends Continuous.M
NearInverse.Continuous.M.TransformModel.DefaultsValue.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple| Modifier and Type | Field and Description | 
|---|---|
| protected Value.Cts | deltaThe "statistical parameter". | 
| double | logIntegralThe log of the normalising constant. | 
| Constructor and Description | 
|---|
| M(double delta_x)A possible use is for σ's prior in  MML.Normal. | 
| M(double msg1,
 double msg2,
 Value delta)The standard constructor for NearInverse Model;
          statistical parameter delta must be a small Value.Cts in
          (0, 1) such as 0.1. | 
| Modifier and Type | Method and Description | 
|---|---|
| double | nlLH(Value ss)Assumes that  statisticsare the data-set itself. | 
| double | nlPdf_x(double x)Nearly - log(1/x), that is + log(x), but not quite,
          corresponding to a pdf(x) of ~1/x, but not quite
          (as always,  | 
nlPdf, random_x, random_x, random, random, random, transformasEstimator, asUPModel, m1m2sp, msg, msg1, msg1bits, msg2, msg2bits, msgBits, nl2LH, nl2Pr, pr, random, randomSeries, statParams, stats, stats, sumNlPr, transform, type, zeroTrivprotected final Value.Cts delta
public final double logIntegral
public M(double msg1,
         double msg2,
         Value delta)
public M(double delta_x)
MML.Normal.public double nlPdf_x(double x)
nlPdf_x in class Continuous.Mpublic double nlLH(Value ss)
statistics
          are the data-set itself.