Modifier and Type | Class and Description |
---|---|
class |
vMF.M
The fully parameterised von Mises - Fisher Model of Directions
in RD.
|
Direction.Uniform
R_D.Forest, R_D.ForestSearch, R_D.Independent, R_D.NrmDir, R_D.Transform
UPModel.Est
Function.Native.WithInverse
Function.Cts2Cts, Function.Cts2Cts2Cts, Function.CtsD2CtsD, Function.HasInverse, Function.Native, Function.Native2, Function.Native3
Value.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple
Modifier and Type | Method and Description |
---|---|
int |
D()
D(), the dimension of RD.
|
UPModel.Est |
estimator(Value t)
Calls the
MML estimator . |
UPModel.Est |
estimatorMaxLH(Value t)
The (rough and ready) maximum likelhood estimator for μ
and κ; see the
MML estimator . |
UPModel.Est |
estimatorMML(Value t)
The MML Estimator for μ and κ.
|
double |
logCD(double kappa)
The
Model's log normalisation constant. |
double |
logF(double N,
double kappa)
log(F(κ)), log Fisher.
|
static void |
main(java.lang.String[] argv)
Run a few, very(!) simple tests.
|
double |
msg1(double N,
double kappa)
Length of the first part of the message.
|
double |
msg2(Vector mu,
double kappa,
Value ss)
Length of the second part of the message.
|
double |
nlLH(Vector mu,
double kappa,
Value ss)
Given μ, κ, and statistics,
stats(ds) |
double |
prior_k(double kappa)
Maybe change this(?)-- the prior's pdf on κ
is (1+κ)-2, κ>0.
|
vMF.M |
sp2Model(double msg1,
double msg2,
Value sp)
Given two-part message lengths, and statistical parameters
Model . |
Value |
stats(boolean add,
Value ss0,
Value ss1)
Combine sufficient statisticses 'ss0' and 'ss1' additively
(add=true), or remove ss1 from ss0 (add=false).
|
Value |
stats(Vector ds,
int lo,
int hi)
Statistics, ss = stats(ds)
|
ds2L1stats, ds2NorL1stats, ds2Nstats, transform
public vMF(Value D)
public vMF.M sp2Model(double msg1, double msg2, Value sp)
Model
.public Value stats(boolean add, Value ss0, Value ss1)
UPModel
stats(ds,lo,hi)
.public double logF(double N, double kappa)
public double msg1(double N, double kappa)
public double msg2(Vector mu, double kappa, Value ss)
public double prior_k(double kappa)
public UPModel.Est estimator(Value t)
MML estimator
.public UPModel.Est estimatorMML(Value t)
maximum likelihood
estimate of μ is
accepted but its estimate of κ is taken as a starting point
(using an R guaranteed that log Fisher
and stats(ds)
.
Note, the vMF has D() parameters -- κ, and D()-1
for Direction μ.public UPModel.Est estimatorMaxLH(Value t)
MML estimator
.
stats(ds)
, estimatorMML
.public double nlLH(Vector mu, double kappa, Value ss)
stats(ds)
estimator
and vMF.M.nlLH(la.la.Value)
.public double logCD(double kappa)
Model's
log normalisation constant.
public static void main(java.lang.String[] argv)