public class Geometric0UPM.M extends Discretes.M
mean
,
μ, is its one statistical-parameter. Also see the
UnParameterised MML.Geometric0
and class
Geometric0UPM
for estimation etc., and
[www].Model.Defaults, Model.Transform
Value.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple
Modifier and Type | Field and Description |
---|---|
double |
mu
Statistical parameter μ, the mean, as a double.
|
Modifier and Type | Method and Description |
---|---|
double |
nlLH(Value ss)
Given sufficient statistics, ss = stats(ds), of a data-set ds,
return the negative log LikeliHood of ds.
|
double |
nlPr_n(int n)
The negative log probability of n; note, n≥0.
|
int |
random_n()
???random_n() could be made much(!) more efficient!!!
This implementation is just for completeness!
|
Value.Int |
random()
Return a random number from 'this' Geometric distribution;
calls
random_n() . |
nlPr, pr_n, pr, shifted
asEstimator, asUPModel, m1m2sp, msg, msg1, msg1bits, msg2, msg2bits, msgBits, nl2LH, nl2Pr, random, randomSeries, statParams, stats, stats, sumNlPr, transform, type, zeroTriv
public M(double msg1, double msg2, Value mu)
public double nlPr_n(int n)
nlPr_n
in class Discretes.M
public double nlLH(Value ss)
public Value.Int random()
random_n()
.public int random_n()
random_n
in class Discretes.M