public class Geometric0UPM extends Discretes
MML.Geometric0
and Geometric0UPM.M
should be enough,
with little or no need to call upon Geometric0UPM directly?
(The '0' is to remind us that the Model is for integers ≥ 0.)Modifier and Type | Class and Description |
---|---|
class |
Geometric0UPM.M
The fully parameterised Geometric Model (probability distribution)
on integers in
mean ,
μ, is its one statistical-parameter. |
Discretes.Bounded, Discretes.Shifted, Discretes.Uniform
UPModel.Est, UPModel.Transform
Function.Native.WithInverse
Function.Cts2Cts, Function.Cts2Cts2Cts, Function.CtsD2CtsD, Function.HasInverse, Function.Native, Function.Native2, Function.Native3
Value.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple
Constructor and Description |
---|
Geometric0UPM(Value t) |
Modifier and Type | Method and Description |
---|---|
UPModel.Est |
estimator(Value AA)
The Estimator has a parameter, 'AA', the parameter of
the
Exponential prior on
the mean of the Geometric distribution. |
Geometric0UPM.M |
sp2Model(double m1,
double m2,
Value mu)
Given m1, m2 and μ return a fully parameterised
Geometric Model. |
Vector |
stats(boolean add,
Value ss0,
Value ss1)
Combine sufficient statisticses 'ss0' and 'ss1' additively
(add=true), or remove ss1 from ss0 (add=false).
|
Vector |
stats(Vector ds,
int lo,
int hi)
Returns
NandSum(ds,lo,hi) . |
java.lang.String |
toString()
Return a String representation of 'this' UnParameterised Model,
including its problem-
defining parameters. |
public Geometric0UPM(Value t)
public Geometric0UPM.M sp2Model(double m1, double m2, Value mu)
Geometric
Model.public Vector stats(Vector ds, int lo, int hi)
NandSum(ds,lo,hi)
.
More on statistics here
.public Vector stats(boolean add, Value ss0, Value ss1)
UPModel
stats(ds,lo,hi)
.public UPModel.Est estimator(Value AA)
Exponential
prior on
the mean of the Geometric distribution.