public class Poisson0UPM.M extends Discretes.M
α
, is both the mean and variance.
Also see the UnParameterised MML.Poisson0
, and
[www].Model.Defaults, Model.Transform
Value.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple
Modifier and Type | Field and Description |
---|---|
double |
alpha
The mean (and variance) of the Poisson0 distribution.
|
Constructor and Description |
---|
M(double msg1,
double msg2,
Value alpha) |
Modifier and Type | Method and Description |
---|---|
double |
nlLH(Value ss)
Given sufficient statistics, ss = stats(ds), of a data-set ds,
return the negative log LikeliHood of ds.
|
double |
nlPr_n(int n)
The negative log of
|
int |
random_n()
??? Poisson0.random_n() could be made much(!) more efficient!!
This implementation is just for completeness.
|
Value.Int |
random()
Return a random number from 'this' Poisson distribution;
calls
random_n() . |
nlPr, pr_n, pr, shifted
asEstimator, asUPModel, m1m2sp, msg, msg1, msg1bits, msg2, msg2bits, msgBits, nl2LH, nl2Pr, random, randomSeries, statParams, stats, stats, sumNlPr, transform, type, zeroTriv
public M(double msg1, double msg2, Value alpha)
public double nlPr_n(int n)
nlPr_n
in class Discretes.M
public double nlLH(Value ss)
public Value.Int random()
random_n()
.public int random_n()
random_n
in class Discretes.M