public class Poisson0UPM extends Discretes
MML.Poisson0
and Poisson0UPM.M
should be enough, with little need to
call upon Poisson0UPM directly? (The '0' is to remind us that
the Model is for integers ≥ 0.)Modifier and Type | Class and Description |
---|---|
class |
Poisson0UPM.M
The fully parameterised Poisson0 Model (probability distribution)
on integers in
α , is both the mean and variance. |
Discretes.Bounded, Discretes.Shifted, Discretes.Uniform
UPModel.Est, UPModel.Transform
Function.Native.WithInverse
Function.Cts2Cts, Function.Cts2Cts2Cts, Function.CtsD2CtsD, Function.HasInverse, Function.Native, Function.Native2, Function.Native3
Value.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple
Constructor and Description |
---|
Poisson0UPM(Value t) |
Modifier and Type | Method and Description |
---|---|
UPModel.Est |
estimator(Value AA)
The Estimator has a parameter, AA, the parameter and mean
of the
Exponential prior. |
Poisson0UPM.M |
sp2Model(double m1,
double m2,
Value alpha)
Given m1, m2 and α, return a fully parameterised
Poisson0 . |
Vector |
stats(boolean add,
Value ss0,
Value ss1)
Combine sufficient statisticses 'ss0' and 'ss1' additively
(add=true), or remove ss1 from ss0 (add=false).
|
Vector |
stats(Vector ds,
int lo,
int hi)
Calculate the
sufficient statistics,
|
java.lang.String |
toString()
Return a String representation of 'this' UnParameterised Model,
including its problem-
defining parameters. |
public Poisson0UPM(Value t)
public Poisson0UPM.M sp2Model(double m1, double m2, Value alpha)
Poisson0
.public Vector stats(Vector ds, int lo, int hi)
sufficient
statistics,
α
but sum log factorials is needed for nlLH
(and hence msg2).public Vector stats(boolean add, Value ss0, Value ss1)
UPModel
stats(ds,lo,hi)
.public UPModel.Est estimator(Value AA)
Exponential
prior.